Spaces:
Runtime error
Runtime error
File size: 7,441 Bytes
239c004 2dcae10 239c004 2dcae10 239c004 908d7e1 239c004 fecb58e 239c004 fecb58e 239c004 fecb58e 239c004 fecb58e 239c004 fecb58e 239c004 2dcae10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import openai
import llama_index
import cryptography
import cryptography.fernet
import huggingface_hub
import huggingface_hub.hf_api
import json
import os
import gradio
class HFace_Pluto(object):
# initialize the object
def __init__(self, name="Pluto",*args, **kwargs):
super(HFace_Pluto, self).__init__(*args, **kwargs)
self.author = "Duc Haba, Girish"
self.name = name
self._ph()
self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
self._pp("Code name", self.name)
self._pp("Author is", self.author)
self._ph()
#
# define class var for stable division
self._device = 'cuda'
self._steps = [3,8,21,55,89,144]
self._guidances = [1.1,3.0,5.0,8.0,13.0,21.0]
self._xkeyfile = '.xoxo'
self._models = []
self._seed = 667 # sum of walnut in ascii (or Angle 667)
self._width = 512
self._height = 512
self._step = 50
self._guidances = 7.5
self._llama_query_engine = None
self._llama_index_doc = None
#self._generator = torch.Generator(device='cuda')
self.pipes = []
self.prompts = []
self.images = []
self.seeds = []
self.fname_id = 0
self.dname_img = "img_colab/"
self._huggingface_key="gAAAAABkgtmOIjpnjwXFWmgh1j2et2kMjHUze-ym6h3BieAp34Sqkqv3EVYvRinETvpw-kXu7RSRl5_9FqrYe-7unfakMvMkU8nHrfB3hBSC76ZTXwkVSzlN0RfBNs9NL8BGjaSJ8mz8"
self._gpt_key="'gAAAAABkgtoTOLPegnxNIAfBfAda17h5HIHTS_65bobO3SdDlJam07AHGrcolvk9c6IWNJtTTxaCb8_JtWnLz0Y5h9doyfL-nJZggeQ6kLtaD4XwZYcG-AtYNNGCnJzVt9AaysPDnu-KWVhnJSe-DyH0oOO33doE0g=='"
self._fkey="=cvsOPRcWD6JONmdr4Sh6-PqF6nT1InYh965mI8f_sef"
self._color_primary = '#2780e3' #blue
self._color_secondary = '#373a3c' #dark gray
self._color_success = '#3fb618' #green
self._color_info = '#9954bb' #purple
self._color_warning = '#ff7518' #orange
self._color_danger = '#ff0039' #red
self._color_mid_gray = '#495057'
return
#
# pretty print output name-value line
def _pp(self, a, b,is_print=True):
# print("%34s : %s" % (str(a), str(b)))
x = f'{"%34s" % str(a)} : {str(b)}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# pretty print the header or footer lines
def _ph(self,is_print=True):
x = f'{"-"*34} : {"-"*34}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
def push_hface_files(self,
hf_names,
hf_space="girishlkiran/ct",
local_dir="/content/"):
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
try:
for f in hf_names:
lo = local_dir + f
huggingface_hub.upload_file(
path_or_fileobj=lo,
path_in_repo=f,
repo_id=hf_space,
repo_type=huggingface_hub.REPO_TYPE_SPACE)
except Exception as e:
self._pp("*Error", e)
return
#
def push_hface_folder(self, hf_folder, hf_space_id, hf_dest_folder=None):
api = huggingface_hub.HfApi()
api.upload_folder(folder_path=hf_folder,
repo_id=hf_space_id,
path_in_repo=hf_dest_folder,
repo_type="space")
return
#
def write_file(self,fname, txt):
f = open(fname, "w")
f.writelines("\n".join(txt))
f.close()
return
#
def _fetch_crypt(self,is_generate=False):
s=self._fkey[::-1]
if (is_generate):
s=open(self._xkeyfile, "rb").read()
return s
#
def _gen_key(self):
key = cryptography.fernet.Fernet.generate_key()
with open(self._xkeyfile, "wb") as key_file:
key_file.write(key)
return
#
def _decrypt_it(self, x):
y = self._fetch_crypt()
f = cryptography.fernet.Fernet(y)
m = f.decrypt(x)
return m.decode()
#
def _encrypt_it(self, x):
key = self._fetch_crypt()
p = x.encode()
f = cryptography.fernet.Fernet(key)
y = f.encrypt(p)
return y
#
def _login_hface(self):
huggingface_hub.login(self._decrypt_it(self._huggingface_key),
add_to_git_credential=True) # non-blocking login
self._ph()
return
#
def _setup_openai(self,key=None):
if (key is None):
key = self._decrypt_it(self._gpt_key)
#
openai.api_key = key
os.environ["OPENAI_API_KEY"] = key
return
#
def _fetch_index_files(self,llama_ix):
res = []
x = llama_ix.ref_doc_info
for val in x.values():
jdata = json.loads(val.to_json())
fname = jdata['extra_info']['file_name']
res.append(fname)
# remove dublication name
res = list(set(res))
return res
# add module/method
#
import functools
def add_method(cls):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
setattr(cls, func.__name__, wrapper)
return func # returning func means func can still be used normally
return decorator
#
monty = HFace_Pluto("Monty")
monty._login_hface()
monty._ph()
monty._setup_openai()
@add_method(HFace_Pluto)
def load_llama_index(self,vindex='vector_index',vpath='./index_storage'):
try:
storage_context = llama_index.StorageContext.from_defaults(persist_dir=vpath)
# load index
self._llama_index_doc = llama_index.load_index_from_storage(storage_context, index_id=vindex)
print(f'Index doc are: {self._fetch_index_files(self._llama_index_doc)}')
except Exception as e:
print('**Error: can not load index, check the index_storage directory or the GPT auth token')
print('If do not have index tokens then run the .gen_llama_index() function')
print(f'Exception: {e}')
return
monty.load_llama_index()
@add_method(HFace_Pluto)
def ask_me(self, p, ll_sign_in_member='Girish' , ll_engine='Humana'):
self._llama_query_engine = self._llama_index_doc.as_query_engine()
ll_engine = self._llama_query_engine
px = f'My name is {ll_sign_in_member}, and I want answer to the following: {p}.'
print("##### " + px)
resp = ll_engine.query(px)
return resp
in_box = [gradio.Textbox(lines=1, label="Your Humana request", placeholder="Your Humana request...see example if you need help.")
,gradio.Radio(["Girish"], label="Login Member", value='Girish', info="Who had login?")
,gradio.Radio(["Humana"], label="Login Member", value='Humana', info="Fine-Tune LLM for:")
]
out_box = [gradio.Textbox(label="Humana response:")]
#
title = "Humana and C&T Fine-tune LLM model"
desc = '*Note: This model is fine-tuned by YML using GPT3.5 as the base LLM.'
arti = '<li><i>**Note: You can add more documentation. The more documentation the model has the smarter it will be.</i></li></ul>'
exp = [
['Tell me the Humana Gold Plus plan.'],
['Please write a summary in bullet point of the Humana Gold Plus SNP-DE H0028-015 (HMO-POS D-SNP) Annual Notice of Changes for 2023.'],
['Write a newsletter introducing Humana Gold Plus plan, and target it to senior citizen demographic.'],
['Please write a summary about the Humana and Longevity Health Partner so that a teenage can understand.'],
['Tell me about the state agency contact information in bullet point.'],
['Please tell me more about the Humana Offer Free Counseling about Medicare and Medicaid'],
['Write four engaging tweets about the Humana Gold Plus plan.'],
['Is Humana is same as human?']
]
flag_opt = [': Good', ': Bad']
flag_dir = './user_feed_back'
gradio.Interface(fn=monty.ask_me,
inputs=in_box,
outputs=out_box,
examples=exp,
title=title,
description=desc,
article=arti).launch(debug=True)
|