Spaces:
Running
Running
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
from Gradio_UI import GradioUI | |
########### setup bd | |
from sqlalchemy import ( | |
Column, | |
Float, | |
Integer, | |
MetaData, | |
String, | |
Table, | |
create_engine, | |
insert, | |
inspect, | |
text, | |
) | |
engine = create_engine("sqlite:///:memory:") | |
metadata_obj = MetaData() | |
# create city SQL table | |
table_name = "receipts" | |
receipts = Table( | |
table_name, | |
metadata_obj, | |
Column("receipt_id", Integer, primary_key=True), | |
Column("customer_name", String(16), primary_key=True), | |
Column("price", Float), | |
Column("tip", Float), | |
) | |
metadata_obj.create_all(engine) | |
rows = [ | |
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20}, | |
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24}, | |
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43}, | |
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00}, | |
] | |
for row in rows: | |
stmt = insert(receipts).values(**row) | |
with engine.begin() as connection: | |
cursor = connection.execute(stmt) | |
inspector = inspect(engine) | |
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")] | |
table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info]) | |
########### | |
########### | |
def sql_engine(query: str) -> str: | |
""" | |
Allows you to perform SQL queries on the table. Returns a string representation of the result. | |
The table is named 'receipts'. Its description is as follows: | |
Columns: | |
- receipt_id: INTEGER | |
- customer_name: VARCHAR(16) | |
- price: FLOAT | |
- tip: FLOAT | |
Args: | |
query: The query to perform. This should be correct SQL. | |
""" | |
output = "" | |
with engine.connect() as con: | |
rows = con.execute(text(query)) | |
for row in rows: | |
output += "\n" + str(row) | |
return output | |
########### | |
final_answer = FinalAnswerTool() | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[DuckDuckGoSearchTool(), sql_engine], ## add your tools here (don't remove final answer) | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() |