File size: 2,085 Bytes
566ae0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import tempfile
import torch
import torch.nn.functional as F
import torchaudio
import gradio as gr
from transformers import Wav2Vec2FeatureExtractor, AutoConfig
from models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification

# Load model and feature extractor
config = AutoConfig.from_pretrained("Gizachew/wev2vec-large960-agu-amharic")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Gizachew/wev2vec-large960-agu-amharic")
model = Wav2Vec2ForSpeechClassification.from_pretrained("Gizachew/wev2vec-large960-agu-amharic")
sampling_rate = feature_extractor.sampling_rate

# Define inputs and outputs for the Gradio interface
audio_input = gr.Audio(label="Upload file", type="filepath")
text_output = gr.TextArea(label="Emotion Prediction Output", text_align="right", rtl=True, type="text")

def SER(audio):
    with tempfile.NamedTemporaryFile(suffix=".wav") as temp_audio_file:
        # Copy the contents of the uploaded audio file to the temporary file
        temp_audio_file.write(open(audio, "rb").read())
        temp_audio_file.flush()
        # Load the audio file using torchaudio
        speech_array, _sampling_rate = torchaudio.load(temp_audio_file.name)
        resampler = torchaudio.transforms.Resample(_sampling_rate)
        speech = resampler(speech_array).squeeze().numpy()
        inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
        inputs = {key: inputs[key] for key in inputs}

        with torch.no_grad():
            logits = model(**inputs).logits

        scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
        # Get the highest score and its corresponding label
        max_index = scores.argmax()
        label = config.id2label[max_index]
        score = scores[max_index]

        # Format the output string
        output = f"{label}: {score * 100:.1f}%"
        
        return output


# Create the Gradio interface
iface = gr.Interface(
    fn=SER,
    inputs=audio_input,
    outputs=text_output
)

# Launch the Gradio app
iface.launch(share=True)