FusionDTI / utils /.ipynb_checkpoints /drug_tokenizer-checkpoint.py
ZhaohanM
Initial commit
0312a01
raw
history blame
3.02 kB
import json
import re
import torch
import torch.nn as nn
from torch.nn import functional as F
class DrugTokenizer:
def __init__(self, vocab_path="tokenizer/vocab.json", special_tokens_path="tokenizer/special_tokens_map.json"):
self.vocab, self.special_tokens = self.load_vocab_and_special_tokens(vocab_path, special_tokens_path)
self.cls_token_id = self.vocab[self.special_tokens['cls_token']]
self.sep_token_id = self.vocab[self.special_tokens['sep_token']]
self.unk_token_id = self.vocab[self.special_tokens['unk_token']]
self.pad_token_id = self.vocab[self.special_tokens['pad_token']]
self.id_to_token = {v: k for k, v in self.vocab.items()}
def load_vocab_and_special_tokens(self, vocab_path, special_tokens_path):
with open(vocab_path, 'r', encoding='utf-8') as vocab_file:
vocab = json.load(vocab_file)
with open(special_tokens_path, 'r', encoding='utf-8') as special_tokens_file:
special_tokens_raw = json.load(special_tokens_file)
special_tokens = {key: value['content'] for key, value in special_tokens_raw.items()}
return vocab, special_tokens
def encode(self, sequence):
tokens = re.findall(r'\[([^\[\]]+)\]', sequence)
input_ids = [self.cls_token_id] + [self.vocab.get(token, self.unk_token_id) for token in tokens] + [self.sep_token_id]
attention_mask = [1] * len(input_ids)
return {
'input_ids': input_ids,
'attention_mask': attention_mask
}
def batch_encode_plus(self, sequences, max_length, padding, truncation, add_special_tokens, return_tensors):
input_ids_list = []
attention_mask_list = []
for sequence in sequences:
encoded = self.encode(sequence)
input_ids = encoded['input_ids']
attention_mask = encoded['attention_mask']
if len(input_ids) > max_length:
input_ids = input_ids[:max_length]
attention_mask = attention_mask[:max_length]
elif len(input_ids) < max_length:
pad_length = max_length - len(input_ids)
input_ids = input_ids + [self.vocab[self.special_tokens['pad_token']]] * pad_length
attention_mask = attention_mask + [0] * pad_length
input_ids_list.append(input_ids)
attention_mask_list.append(attention_mask)
return {
'input_ids': torch.tensor(input_ids_list, dtype=torch.long),
'attention_mask': torch.tensor(attention_mask_list, dtype=torch.long)
}
def decode(self, input_ids, skip_special_tokens=False):
tokens = []
for id in input_ids:
if skip_special_tokens and id in [self.cls_token_id, self.sep_token_id, self.pad_token_id]:
continue
tokens.append(self.id_to_token.get(id, self.special_tokens['unk_token']))
sequence = ''.join([f'[{token}]' for token in tokens])
return sequence