File size: 36,434 Bytes
7c46397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
import logging
import os
import sys

sys.path.append("../")
from pytorch_metric_learning.distances import CosineSimilarity
from pytorch_metric_learning.reducers import ThresholdReducer
from pytorch_metric_learning.regularizers import LpRegularizer
from pytorch_metric_learning import losses


import torch
import torch.nn as nn
from torch.nn import functional as F
from pytorch_metric_learning import losses, miners
from torch.cuda.amp import autocast
from torch.nn import Module
from tqdm import tqdm
from utils.gd_model import GDANet
from torch.nn import MultiheadAttention

from transformers import BertModel
from transformers import EsmModel, EsmConfig

LOGGER = logging.getLogger(__name__)
    
class FusionModule(nn.Module):
    def __init__(self, out_dim, num_head, dropout= 0.1):
        super(FusionModule, self).__init__()
        """FusionModule.

        Args:
            dropout= 0.1 is defaut
            out_dim: model output dimension
            num_head = 8: Multi-head Attention
        """

        self.out_dim = out_dim
        self.num_head = num_head

        self.WqS = nn.Linear(out_dim, out_dim)
        self.WkS = nn.Linear(out_dim, out_dim)
        self.WvS = nn.Linear(out_dim, out_dim)

        self.WqT = nn.Linear(out_dim, out_dim)
        self.WkT = nn.Linear(out_dim, out_dim)
        self.WvT = nn.Linear(out_dim, out_dim)
        self.multi_head_attention = nn.MultiheadAttention(out_dim, num_head, dropout=dropout)

    def forward(self, zs, zt):
        #  nn.MultiheadAttention The input representation is (token_length, batch_size, out_dim)
        # zs = protein_representation.permute(1, 0, 2)
        # zt = disease_representation.permute(1, 0, 2)   
        
        # Compute query, key and value representations
        qs = self.WqS(zs)
        ks = self.WkS(zs)
        vs = self.WvS(zs)

        qt = self.WqT(zt)
        kt = self.WkT(zt)
        vt = self.WvT(zt)
        
        #self.multi_head_attention() The function returns two values: the representation and the attention weight matrix, computed after multiple attentions. In this case, we only care about the computed representation and not the attention weight matrix, so "_" is used to indicate that we do not intend to use or store the second return value.
        zs_attention1, _ = self.multi_head_attention(qs, ks, vs)
        zs_attention2, _ = self.multi_head_attention(qs, kt, vt)
        zt_attention1, _ = self.multi_head_attention(qt, kt, vt)
        zt_attention2, _ = self.multi_head_attention(qt, ks, vs)

        protein_fused = 0.5 * (zs_attention1 + zs_attention2)
        dis_fused = 0.5 * (zt_attention1 + zt_attention2)
        
        return protein_fused, dis_fused

class CrossAttentionBlock(nn.Module):

    def __init__(self, hidden_dim, num_heads):
        super(CrossAttentionBlock, self).__init__()
        if hidden_dim % num_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (hidden_dim, num_heads))
        self.hidden_dim = hidden_dim
        self.num_heads = num_heads
        self.head_size = hidden_dim // num_heads

        self.query1 = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.key1 = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.value1 = nn.Linear(hidden_dim, hidden_dim, bias=False)

        self.query2 = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.key2 = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.value2 = nn.Linear(hidden_dim, hidden_dim, bias=False)

    def _alpha_from_logits(self, logits, mask_row, mask_col, inf=1e6):
        N, L1, L2, H = logits.shape
        mask_row = mask_row.view(N, L1, 1).repeat(1, 1, H)
        mask_col = mask_col.view(N, L2, 1).repeat(1, 1, H)
        mask_pair = torch.einsum('blh, bkh->blkh', mask_row, mask_col)

        logits = torch.where(mask_pair, logits, logits - inf)
        alpha = torch.softmax(logits, dim=2)
        mask_row = mask_row.view(N, L1, 1, H).repeat(1, 1, L2, 1)
        alpha = torch.where(mask_row, alpha, torch.zeros_like(alpha))
        return alpha

    def _heads(self, x, n_heads, n_ch):
        s = list(x.size())[:-1] + [n_heads, n_ch]
        return x.view(*s)

    def forward(self, input1, input2, mask1, mask2):
        query1 = self._heads(self.query1(input1), self.num_heads, self.head_size)
        key1 = self._heads(self.key1(input1), self.num_heads, self.head_size)
        query2 = self._heads(self.query2(input2), self.num_heads, self.head_size)
        key2 = self._heads(self.key2(input2), self.num_heads, self.head_size)
        logits11 = torch.einsum('blhd, bkhd->blkh', query1, key1)
        logits12 = torch.einsum('blhd, bkhd->blkh', query1, key2)
        logits21 = torch.einsum('blhd, bkhd->blkh', query2, key1)
        logits22 = torch.einsum('blhd, bkhd->blkh', query2, key2)

        alpha11 = self._alpha_from_logits(logits11, mask1, mask1)
        alpha12 = self._alpha_from_logits(logits12, mask1, mask2)
        alpha21 = self._alpha_from_logits(logits21, mask2, mask1)
        alpha22 = self._alpha_from_logits(logits22, mask2, mask2)

        value1 = self._heads(self.value1(input1), self.num_heads, self.head_size)
        value2 = self._heads(self.value2(input2), self.num_heads, self.head_size)
        output1 = (torch.einsum('blkh, bkhd->blhd', alpha11, value1).flatten(-2) +
                   torch.einsum('blkh, bkhd->blhd', alpha12, value2).flatten(-2)) / 2
        output2 = (torch.einsum('blkh, bkhd->blhd', alpha21, value1).flatten(-2) +
                   torch.einsum('blkh, bkhd->blhd', alpha22, value2).flatten(-2)) / 2

        return output1, output2

class GDA_Metric_Learning(GDANet):
    def __init__(
            self, prot_encoder, disease_encoder, prot_out_dim, disease_out_dim, args
    ):
        """Constructor for the model.

        Args:
            prot_encoder (_type_): Protein encoder.
            disease_encoder (_type_): Disease Textual encoder.
            prot_out_dim (_type_): Dimension of the Protein encoder.
            disease_out_dim (_type_): Dimension of the Disease encoder.
            args (_type_): _description_
        """
        super(GDA_Metric_Learning, self).__init__(
            prot_encoder,
            disease_encoder,
        )
        self.prot_encoder = prot_encoder
        self.disease_encoder = disease_encoder
        self.loss = args.loss
        self.use_miner = args.use_miner
        self.miner_margin = args.miner_margin
        self.agg_mode = args.agg_mode
        self.prot_reg = nn.Linear(prot_out_dim, 1024)
        # self.prot_reg = nn.Linear(prot_out_dim, disease_out_dim)
        self.dis_reg = nn.Linear(disease_out_dim, 1024)
        # self.prot_adapter_name = None
        # self.disease_adapter_name = None
        
        self.fusion_layer = FusionModule(1024, num_head=8)
        self.cross_attention_layer = CrossAttentionBlock(1024, 8)
        
        # # MMP Prediction Heads
        # self.prot_pred_head = nn.Sequential(
        #     nn.Linear(disease_out_dim, disease_out_dim),
        #     nn.ReLU(),
        #     nn.Linear(disease_out_dim, 1280)  #vocabulary size : prot model tokenize length 30   446
        # )
        # self.dise_pred_head = nn.Sequential(
        #     nn.Linear(disease_out_dim, disease_out_dim),
        #     nn.ReLU(),
        #     nn.Linear(disease_out_dim, 768) #vocabulary size : disease model tokenize length 30522
        # )
        
        if self.use_miner:
            self.miner = miners.TripletMarginMiner(
                margin=args.miner_margin, type_of_triplets="all"
            )
        else:
            self.miner = None

        if self.loss == "ms_loss":
            self.loss = losses.MultiSimilarityLoss(
                alpha=2, beta=50, base=0.5
            )  # 1,2,3; 40,50,60
            #1_40=1.5141 50=1.4988 60=1.4905 2_60=1.1786 50=1.1874 40=1.2008 3_40=1.1146 50=1.1012
        elif self.loss == "circle_loss":
            self.loss = losses.CircleLoss(
                m=0.4, gamma=80
            )
        elif self.loss == "triplet_loss":
            self.loss = losses.TripletMarginLoss( 
                margin=0.05, swap=False, smooth_loss=False,
                triplets_per_anchor="all")
             # distance = CosineSimilarity(), 
             # reducer = ThresholdReducer(high=0.3), 
             # embedding_regularizer = LpRegularizer()  )
            
        elif self.loss == "infoNCE":
            self.loss = losses.NTXentLoss(
                temperature=0.07
            )  # The MoCo paper uses 0.07, while SimCLR uses 0.5.
        elif self.loss == "lifted_structure_loss":
            self.loss = losses.LiftedStructureLoss(
                neg_margin=1, pos_margin=0
            )
        elif self.loss == "nca_loss":
            self.loss = losses.NCALoss(
                softmax_scale=1
            )
        self.fusion = False
        # self.stack = False
        self.dropout = torch.nn.Dropout(args.dropout)
        print("miner:", self.miner)
        print("loss:", self.loss)

    # def add_fusion(self):
    #     adapter_setup = Fuse("prot_adapter", "disease_adapter")
    #     self.prot_encoder.add_fusion(adapter_setup)
    #     self.prot_encoder.set_active_adapters(adapter_setup)
    #     self.prot_encoder.train_fusion(adapter_setup)
    #     self.disease_encoder.add_fusion(adapter_setup)
    #     self.disease_encoder.set_active_adapters(adapter_setup)
    #     self.disease_encoder.train_fusion(adapter_setup)
    #     self.fusion = True

    # def add_stack_gda(self, reduction_factor):
    #     self.add_gda_adapters(reduction_factor=reduction_factor)
    #     # adapter_setup = Fuse("prot_adapter", "disease_adapter")
    #     self.prot_encoder.active_adapters = Stack(
    #         self.prot_adapter_name, self.gda_adapter_name
    #     )
    #     self.disease_encoder.active_adapters = Stack(
    #         self.disease_adapter_name, self.gda_adapter_name
    #     )
    #     print("stacked adapters loaded.")
    #     self.stack = True

#     def load_adapters(
#             self,
#             prot_model_path,
#             disease_model_path,
#             prot_adapter_name="prot_adapter",
#             disease_adapter_name="disease_adapter",
#     ):
#         if os.path.exists(prot_model_path):
#             print(f"loading prot adapter from: {prot_model_path}")
#             self.prot_adapter_name = prot_adapter_name
#             self.prot_encoder.load_adapter(prot_model_path, load_as=prot_adapter_name)
#             self.prot_encoder.set_active_adapters(prot_adapter_name)
#             print(f"load protein adapters from: {prot_model_path} {prot_adapter_name}")
#         else:
#             print(f"{prot_model_path} not exits")

#         if os.path.exists(disease_model_path):
#             print(f"loading prot adapter from: {disease_model_path}")
#             self.disease_adapter_name = disease_adapter_name
#             self.disease_encoder.load_adapter(
#                 disease_model_path, load_as=disease_adapter_name
#             )
#             self.disease_encoder.set_active_adapters(disease_adapter_name)
#             print(
#                 f"load disease adapters from: {disease_model_path} {disease_adapter_name}"
#             )
#         else:
#             print(f"{disease_model_path} not exits")
            
    def non_adapters(
            self,
            prot_model_path,
            disease_model_path,
            
    ):
        if os.path.exists(prot_model_path):
            # Load the entire model for prot_model
            prot_model = torch.load(prot_model_path)
            # Set the prot_encoder to the loaded model
            self.prot_encoder = prot_model.prot_encoder
            print(f"load protein from: {prot_model_path}")     
        else:
            print(f"{prot_model_path} not exits")

        if os.path.exists(disease_model_path):
            # Load the entire model for disease_model
            disease_model = torch.load(disease_model_path)
            # Set the disease_encoder to the loaded model
            self.disease_encoder = disease_model.disease_encoder
            print(f"load disease from: {disease_model_path}")

        else:
            print(f"{disease_model_path} not exits")


#     def add_gda_adapters(
#             self,
#             gda_adapter_name="gda_adapter",
#             reduction_factor=16,
#     ):
#         """Initialise adapters

#         Args:
#             prot_adapter_name (str, optional): _description_. Defaults to "prot_adapter".
#             disease_adapter_name (str, optional): _description_. Defaults to "disease_adapter".
#             reduction_factor (int, optional): _description_. Defaults to 16.
#         """
#         adapter_config = AdapterConfig.load(
#             "pfeiffer", reduction_factor=reduction_factor
#         )
#         self.gda_adapter_name = gda_adapter_name
#         self.prot_encoder.add_adapter(gda_adapter_name, config=adapter_config)
#         self.prot_encoder.train_adapter([gda_adapter_name])
#         self.disease_encoder.add_adapter(gda_adapter_name, config=adapter_config)
#         self.disease_encoder.train_adapter([gda_adapter_name])

#     def init_adapters(
#             self,
#             prot_adapter_name="gda_prot_adapter",
#             disease_adapter_name="gda_disease_adapter",
#             reduction_factor=16,
#     ):
#         """Initialise adapters

#         Args:
#             prot_adapter_name (str, optional): _description_. Defaults to "prot_adapter".
#             disease_adapter_name (str, optional): _description_. Defaults to "disease_adapter".
#             reduction_factor (int, optional): _description_. Defaults to 16.
#         """
#         adapter_config = AdapterConfig.load(
#             "pfeiffer", reduction_factor=reduction_factor
#         )

#         self.prot_adapter_name = prot_adapter_name
#         self.disease_adapter_name = disease_adapter_name
#         self.prot_encoder.add_adapter(prot_adapter_name, config=adapter_config)
#         self.prot_encoder.train_adapter([prot_adapter_name])
#         self.disease_encoder.add_adapter(disease_adapter_name, config=adapter_config)
#         self.disease_encoder.train_adapter([disease_adapter_name])
#         print(f"adapter modules initialized")

#     def save_adapters(self, save_path_prefix, total_step):
#         """Save adapters into file.

#         Args:
#             save_path_prefix (string): saving path prefix.
#             total_step (int): total step number.
#         """
#         prot_save_dir = os.path.join(
#             save_path_prefix, f"prot_adapter_step_{total_step}"
#         )# adapter
#         disease_save_dir = os.path.join(
#             save_path_prefix, f"disease_adapter_step_{total_step}"
#         )
#         os.makedirs(prot_save_dir, exist_ok=True)
#         os.makedirs(disease_save_dir, exist_ok=True)
#         self.prot_encoder.save_adapter(prot_save_dir, self.prot_adapter_name)
#         prot_head_save_path = os.path.join(prot_save_dir, "prot_head.bin")
#         torch.save(self.prot_reg, prot_head_save_path)
#         self.disease_encoder.save_adapter(disease_save_dir, self.disease_adapter_name)
#         disease_head_save_path = os.path.join(prot_save_dir, "disease_head.bin")
#         torch.save(self.prot_reg, disease_head_save_path)
#         if self.fusion:
#             self.prot_encoder.save_all_adapters(prot_save_dir)
#             self.disease_encoder.save_all_adapters(disease_save_dir)

    def predict(self, query_toks1, query_toks2):
        """
        query : (N, h), candidates : (N, topk, h)
        output : (N, topk)
        """
        # Extract input_ids and attention_mask for protein
        prot_input_ids = query_toks1["input_ids"]
        prot_attention_mask = query_toks1["attention_mask"]

        # Extract input_ids and attention_mask for dis
        dis_input_ids = query_toks2["input_ids"]
        dis_attention_mask = query_toks2["attention_mask"]

        # Process inputs through encoders
        last_hidden_state1 = self.prot_encoder(
            input_ids=prot_input_ids, attention_mask=prot_attention_mask, return_dict=True
        ).last_hidden_state
        last_hidden_state1 = self.prot_reg(last_hidden_state1)

        last_hidden_state2 = self.disease_encoder(
            input_ids=dis_input_ids, attention_mask=dis_attention_mask, return_dict=True
        ).last_hidden_state
        last_hidden_state2 = self.dis_reg(last_hidden_state2)
       # Apply the cross-attention layer
        prot_fused, dis_fused = self.cross_attention_layer(
            last_hidden_state1, last_hidden_state2, prot_attention_mask, dis_attention_mask
        )

        # last_hidden_state1 = self.prot_encoder(
        #     query_toks1, return_dict=True
        # ).last_hidden_state
        # last_hidden_state1 = self.prot_reg(
        #     last_hidden_state1
        # )  # transform the prot embedding into the same dimension as the disease embedding
        # last_hidden_state2 = self.disease_encoder(
        #     query_toks2, return_dict=True
        # ).last_hidden_state
        # last_hidden_state2 = self.dis_reg(
        #     last_hidden_state2
        # )  # transform the disease embedding into 1024
        
       # Apply the fusion layer and Recovery of representational shape
       # prot_fused, dis_fused = self.fusion_layer(last_hidden_state1, last_hidden_state2)
        
        if self.agg_mode == "cls":
            query_embed1 = prot_fused[:, 0]  # query : [batch_size, hidden]
            query_embed2 = dis_fused[:, 0]  # query : [batch_size, hidden]
        elif self.agg_mode == "mean_all_tok":
            query_embed1 = prot_fused.mean(1)  # query : [batch_size, hidden]
            query_embed2 = dis_fused.mean(1)  # query : [batch_size, hidden]
        elif self.agg_mode == "mean":
            query_embed1 = (
                                   prot_fused * query_toks1["attention_mask"].unsqueeze(-1)
                           ).sum(1) / query_toks1["attention_mask"].sum(-1).unsqueeze(-1)
            query_embed2 = (
                                   dis_fused * query_toks2["attention_mask"].unsqueeze(-1)
                           ).sum(1) / query_toks2["attention_mask"].sum(-1).unsqueeze(-1)
        else:
            raise NotImplementedError()
        
        query_embed = torch.cat([query_embed1, query_embed2], dim=1)
        return query_embed
  
    def forward(self, query_toks1, query_toks2, labels):
        """
        query : (N, h), candidates : (N, topk, h)
        output : (N, topk)
        """
        # Extract input_ids and attention_mask for protein
        prot_input_ids = query_toks1["input_ids"]
        prot_attention_mask = query_toks1["attention_mask"]

        # Extract input_ids and attention_mask for dis
        dis_input_ids = query_toks2["input_ids"]
        dis_attention_mask = query_toks2["attention_mask"]

        # Process inputs through encoders
        last_hidden_state1 = self.prot_encoder(
            input_ids=prot_input_ids, attention_mask=prot_attention_mask, return_dict=True
        ).last_hidden_state
        last_hidden_state1 = self.prot_reg(last_hidden_state1)

        last_hidden_state2 = self.disease_encoder(
            input_ids=dis_input_ids, attention_mask=dis_attention_mask, return_dict=True
        ).last_hidden_state
        last_hidden_state2 = self.dis_reg(last_hidden_state2)
       # Apply the cross-attention layer
        prot_fused, dis_fused = self.cross_attention_layer(
            last_hidden_state1, last_hidden_state2, prot_attention_mask, dis_attention_mask
        )
       #  last_hidden_state1 = self.prot_encoder(
       #      query_toks1, return_dict=True
       #  ).last_hidden_state
        
       #  last_hidden_state1 = self.prot_reg(
       #      last_hidden_state1
       #  )  # transform the prot embedding into the same dimension as the disease embedding
       #  last_hidden_state2 = self.disease_encoder(
       #      query_toks2, return_dict=True
       #  ).last_hidden_state
       #  last_hidden_state2 = self.dis_reg(
       #      last_hidden_state2
       #  )  # transform the disease embedding into 1024
        
       # # Apply the fusion layer and Recovery of representational shape
       #  prot_fused, dis_fused = self.fusion_layer(last_hidden_state1, last_hidden_state2)
        if self.agg_mode == "cls":
            query_embed1 = prot_pred[:, 0]  # query : [batch_size, hidden]
            query_embed2 = dise_pred[:, 0]  # query : [batch_size, hidden]
        elif self.agg_mode == "mean_all_tok":
            query_embed1 = prot_fused.mean(1)  # query : [batch_size, hidden]
            query_embed2 = dis_fused.mean(1)  # query : [batch_size, hidden]
        elif self.agg_mode == "mean":
            query_embed1 = (
                                   prot_pred * query_toks1["attention_mask"].unsqueeze(-1)
                           ).sum(1) / query_toks1["attention_mask"].sum(-1).unsqueeze(-1)
            query_embed2 = (
                                   dis_fused * query_toks2["attention_mask"].unsqueeze(-1)
                           ).sum(1) / query_toks2["attention_mask"].sum(-1).unsqueeze(-1)
        else:
            raise NotImplementedError()

        # print("query_embed1 =", query_embed1.shape, "query_embed2 =", query_embed2.shape)
        query_embed = torch.cat([query_embed1, query_embed2], dim=0)
        # print("query_embed =", len(query_embed))
        
        labels = torch.cat([torch.arange(len(labels)), torch.arange(len(labels))], dim=0)
        
        if self.use_miner:
            hard_pairs = self.miner(query_embed, labels)
            return self.loss(query_embed, labels, hard_pairs)# + loss_mmp
        else:
            loss = self.loss(query_embed, labels)# + loss_mmp
            # print('loss :', loss)
            return loss

    def get_embeddings(self, mentions, batch_size=1024):
        """
        Compute all embeddings from mention tokens.
        """
        embedding_table = []
        with torch.no_grad():
            for start in tqdm(range(0, len(mentions), batch_size)):
                end = min(start + batch_size, len(mentions))
                batch = mentions[start:end]
                batch_embedding = self.vectorizer(batch)
                batch_embedding = batch_embedding.cpu()
                embedding_table.append(batch_embedding)
        embedding_table = torch.cat(embedding_table, dim=0)
        return embedding_table



class DDA_Metric_Learning(Module):
    def __init__(self, disease_encoder, args):
        """Constructor for the model.

        Args:
            disease_encoder (_type_): disease encoder.
            args (_type_): _description_
        """
        super(DDA_Metric_Learning, self).__init__()
        self.disease_encoder = disease_encoder
        self.loss = args.loss
        self.use_miner = args.use_miner
        self.miner_margin = args.miner_margin
        self.agg_mode = args.agg_mode
        self.disease_adapter_name = None
        if self.use_miner:
            self.miner = miners.TripletMarginMiner(
                margin=args.miner_margin, type_of_triplets="all"
            )
        else:
            self.miner = None

        if self.loss == "ms_loss":
            self.loss = losses.MultiSimilarityLoss(
                alpha=1, beta=60, base=0.5
            )  # 1,2,3; 40,50,60
        elif self.loss == "circle_loss":
            self.loss = losses.CircleLoss()
        elif self.loss == "triplet_loss":
            self.loss = losses.TripletMarginLoss()
        elif self.loss == "infoNCE":
            self.loss = losses.NTXentLoss(
                temperature=0.07
            )  # The MoCo paper uses 0.07, while SimCLR uses 0.5.
        elif self.loss == "lifted_structure_loss":
            self.loss = losses.LiftedStructureLoss()
        elif self.loss == "nca_loss":
            self.loss = losses.NCALoss()
        self.reg = None
        self.cls = None
        self.dropout = torch.nn.Dropout(args.dropout)
        print("miner:", self.miner)
        print("loss:", self.loss)

    def add_classification_head(self, disease_out_dim=768, out_dim=2):
        """Add regression head.

        Args:
            disease_out_dim (_type_): disease encoder output dimension.
            out_dim (int, optional): output dimension. Defaults to 2.
            drop_out (int, optional): dropout rate. Defaults to 0.
        """
        self.cls = nn.Linear(disease_out_dim * 2, out_dim)

    def load_disease_adapter(
            self,
            disease_model_path,
            disease_adapter_name="disease_adapter",
    ):
        if os.path.exists(disease_model_path):
            self.disease_adapter_name = disease_adapter_name
            self.disease_encoder.load_adapter(
                disease_model_path, load_as=disease_adapter_name
            )
            self.disease_encoder.set_active_adapters(disease_adapter_name)
            print(
                f"load disease adapters from: {disease_model_path} {disease_adapter_name}"
            )
        else:
            print(f"{disease_adapter_name} not exits")

    def init_adapters(
            self,
            disease_adapter_name="disease_adapter",
            reduction_factor=16,
    ):
        """Initialise adapters

        Args:
            disease_adapter_name (str, optional): _description_. Defaults to "disease_adapter".
            reduction_factor (int, optional): _description_. Defaults to 16.
        """
        adapter_config = AdapterConfig.load(
            "pfeiffer", reduction_factor=reduction_factor
        )
        self.disease_adapter_name = disease_adapter_name
        self.disease_encoder.add_adapter(disease_adapter_name, config=adapter_config)
        self.disease_encoder.train_adapter([disease_adapter_name])

    def save_adapters(self, save_path_prefix, total_step):
        """Save adapters into file.

        Args:
            save_path_prefix (string): saving path prefix.
            total_step (int): total step number.
        """
        disease_save_dir = os.path.join(
            save_path_prefix, f"disease_adapter_step_{total_step}"
        )
        os.makedirs(disease_save_dir, exist_ok=True)
        self.disease_encoder.save_adapter(disease_save_dir, self.disease_adapter_name)

    def predict(self, x1, x2):
        """
        query : (N, h), candidates : (N, topk, h)
        output : (N, topk)

        """
        if self.agg_mode == "cls":
            x1 = self.disease_encoder(x1).last_hidden_state[:, 0]
            x2 = self.disease_encoder(x2).last_hidden_state[:, 0]
            x = torch.cat((x1, x2), 1)
            return x
        else:
            x1 = self.disease_encoder(x1).last_hidden_state.mean(1)  # query : [batch_size, hidden]
            x2 = self.disease_encoder(x2).last_hidden_state.mean(1)  # query : [batch_size, hidden]
            x = torch.cat((x1, x2), 1)
            return x

    def module_predict(self, x1, x2):
        """
        query : (N, h), candidates : (N, topk, h)
        output : (N, topk)

        """
        if self.agg_mode == "cls":
            x1 = self.disease_encoder.module(x1).last_hidden_state[:, 0]
            x2 = self.disease_encoder.module(x2).last_hidden_state[:, 0]
            x = torch.cat((x1, x2), 1)
            return x
        else:
            x1 = self.disease_encoder.module(x1).last_hidden_state.mean(1)  # query : [batch_size, hidden]
            x2 = self.disease_encoder.module(x2).last_hidden_state.mean(1)  # query : [batch_size, hidden]
            x = torch.cat((x1, x2), 1)
            return x

    @autocast()
    def forward(self, query_toks1, query_toks2, labels):
        """
        query : (N, h), candidates : (N, topk, h)
        output : (N, topk)
        """
        last_hidden_state1 = self.disease_encoder(
            **query_toks1, return_dict=True
        ).last_hidden_state
        last_hidden_state2 = self.disease_encoder(
            **query_toks2, return_dict=True
        ).last_hidden_state
        if self.agg_mode == "cls":
            query_embed1 = last_hidden_state1[:, 0]  # query : [batch_size, hidden]
            query_embed2 = last_hidden_state2[:, 0]  # query : [batch_size, hidden]
        elif self.agg_mode == "mean_all_tok":
            query_embed1 = last_hidden_state1.mean(1)  # query : [batch_size, hidden]
            query_embed2 = last_hidden_state2.mean(1)  # query : [batch_size, hidden]
        elif self.agg_mode == "mean":
            query_embed1 = (
                                   last_hidden_state1 * query_toks1["attention_mask"].unsqueeze(-1)
                           ).sum(1) / query_toks1["attention_mask"].sum(-1).unsqueeze(-1)
            query_embed2 = (
                                   last_hidden_state2 * query_toks2["attention_mask"].unsqueeze(-1)
                           ).sum(1) / query_toks2["attention_mask"].sum(-1).unsqueeze(-1)
        else:
            raise NotImplementedError()
        query_embed = torch.cat([query_embed1, query_embed2], dim=0)

        labels = torch.cat([labels, labels], dim=0)
        if self.use_miner:
            hard_pairs = self.miner(query_embed, labels)
            print('miner used')
            return self.loss(query_embed, labels, hard_pairs)
        else:
            print('no miner')
            return self.loss(query_embed, labels)


class PPI_Metric_Learning(Module):
    def __init__(self, prot_encoder, args):
        """Constructor for the model.

        Args:
            prot_encoder (_type_): Protein encoder.
            prot_encoder (_type_): prot Textual encoder.
            prot_out_dim (_type_): Dimension of the Protein encoder.
            prot_out_dim (_type_): Dimension of the prot encoder.
            args (_type_): _description_
        """
        super(PPI_Metric_Learning, self).__init__()
        self.prot_encoder = prot_encoder
        self.loss = args.loss
        self.use_miner = args.use_miner
        self.miner_margin = args.miner_margin
        self.agg_mode = args.agg_mode
        self.prot_adapter_name = None
        if self.use_miner:
            self.miner = miners.TripletMarginMiner(
                margin=args.miner_margin, type_of_triplets="all"
            )
        else:
            self.miner = None

        if self.loss == "ms_loss":
            self.loss = losses.MultiSimilarityLoss(
                alpha=1, beta=60, base=0.5
            )  # 1,2,3; 40,50,60
        elif self.loss == "circle_loss":
            self.loss = losses.CircleLoss()
        elif self.loss == "triplet_loss":
            self.loss = losses.TripletMarginLoss()
        elif self.loss == "infoNCE":
            self.loss = losses.NTXentLoss(
                temperature=0.07
            )  # The MoCo paper uses 0.07, while SimCLR uses 0.5.
        elif self.loss == "lifted_structure_loss":
            self.loss = losses.LiftedStructureLoss()
        elif self.loss == "nca_loss":
            self.loss = losses.NCALoss()
        self.reg = None
        self.cls = None
        self.dropout = torch.nn.Dropout(args.dropout)
        print("miner:", self.miner)
        print("loss:", self.loss)

    def add_classification_head(self, prot_out_dim=1024, out_dim=2):
        """Add regression head.

        Args:
            prot_out_dim (_type_): protein encoder output dimension.
            disease_out_dim (_type_): disease encoder output dimension.
            out_dim (int, optional): output dimension. Defaults to 2.
            drop_out (int, optional): dropout rate. Defaults to 0.
        """
        self.cls = nn.Linear(prot_out_dim + prot_out_dim, out_dim)

    def load_prot_adapter(
            self,
            prot_model_path,
            prot_adapter_name="prot_adapter",
    ):
        if os.path.exists(prot_model_path):
            self.prot_adapter_name = prot_adapter_name
            self.prot_encoder.load_adapter(prot_model_path, load_as=prot_adapter_name)
            self.prot_encoder.set_active_adapters(prot_adapter_name)
            print(f"load protein adapters from: {prot_model_path} {prot_adapter_name}")
        else:
            print(f"{prot_model_path} not exits")

    def init_adapters(
            self,
            prot_adapter_name="prot_adapter",
            reduction_factor=16,
    ):
        """Initialise adapters

        Args:
            prot_adapter_name (str, optional): _description_. Defaults to "prot_adapter".
            reduction_factor (int, optional): _description_. Defaults to 16.
        """
        adapter_config = AdapterConfig.load(
            "pfeiffer", reduction_factor=reduction_factor
        )
        self.prot_adapter_name = prot_adapter_name
        self.prot_encoder.add_adapter(prot_adapter_name, config=adapter_config)
        self.prot_encoder.train_adapter([prot_adapter_name])

    def save_adapters(self, save_path_prefix, total_step):
        """Save adapters into file.

        Args:
            save_path_prefix (string): saving path prefix.
            total_step (int): total step number.
        """
        prot_save_dir = os.path.join(
            save_path_prefix, f"prot_adapter_step_{total_step}"
        )
        os.makedirs(prot_save_dir, exist_ok=True)
        self.prot_encoder.save_adapter(prot_save_dir, self.prot_adapter_name)

    def predict(self, x1, x2):
        """
        query : (N, h), candidates : (N, topk, h)
        output : (N, topk)

        """

        if self.agg_mode == "cls":
            x1 = self.prot_encoder(x1).last_hidden_state[:, 0]
            x2 = self.prot_encoder(x2).last_hidden_state[:, 0]
            x = torch.cat((x1, x2), 1)
            return x
        else:
            x1 = self.prot_encoder(x1).last_hidden_state.mean(1)  # query : [batch_size, hidden]
            x2 = self.prot_encoder(x2).last_hidden_state.mean(1)  # query : [batch_size, hidden]
            x = torch.cat((x1, x2), 1)
            return x

    def module_predict(self, x1, x2):
        """
        query : (N, h), candidates : (N, topk, h)
        output : (N, topk)

        """
        if self.agg_mode == "cls":
            x1 = self.prot_encoder.module(x1).last_hidden_state[:, 0]
            x2 = self.prot_encoder.module(x2).last_hidden_state[:, 0]
            x = torch.cat((x1, x2), 1)
            return x
        else:
            x1 = self.prot_encoder.module(x1).last_hidden_state.mean(1)  # query : [batch_size, hidden]
            x2 = self.prot_encoder.module(x2).last_hidden_state.mean(1)  # query : [batch_size, hidden]
            x = torch.cat((x1, x2), 1)
            return x

    @autocast()
    def forward(self, query_toks1, query_toks2, labels):
        """
        query : (N, h), candidates : (N, topk, h)
        output : (N, topk)
        """
        last_hidden_state1 = self.prot_encoder(
            **query_toks1, return_dict=True
        ).last_hidden_state
        last_hidden_state2 = self.prot_encoder(
            **query_toks2, return_dict=True
        ).last_hidden_state
        if self.agg_mode == "cls":
            query_embed1 = last_hidden_state1[:, 0]  # query : [batch_size, hidden]
            query_embed2 = last_hidden_state2[:, 0]  # query : [batch_size, hidden]
        elif self.agg_mode == "mean_all_tok":
            query_embed1 = last_hidden_state1.mean(1)  # query : [batch_size, hidden]
            query_embed2 = last_hidden_state2.mean(1)  # query : [batch_size, hidden]
        elif self.agg_mode == "mean":
            query_embed1 = (
                                   last_hidden_state1 * query_toks1["attention_mask"].unsqueeze(-1)
                           ).sum(1) / query_toks1["attention_mask"].sum(-1).unsqueeze(-1)
            query_embed2 = (
                                   last_hidden_state2 * query_toks2["attention_mask"].unsqueeze(-1)
                           ).sum(1) / query_toks2["attention_mask"].sum(-1).unsqueeze(-1)
        else:
            raise NotImplementedError()
        query_embed = torch.cat([query_embed1, query_embed2], dim=0)

        labels = torch.cat([labels, labels], dim=0)
        if self.use_miner:
            hard_pairs = self.miner(query_embed, labels)
            return self.loss(query_embed, labels, hard_pairs)
        else:
            return self.loss(query_embed, labels)