Spaces:
Runtime error
Runtime error
File size: 11,242 Bytes
4f0769b 9fbf2b6 4f0769b c0d38ef 4f0769b c0d38ef 4f0769b 9fbf2b6 5080d2f 9fbf2b6 4f0769b 3349d08 4f0769b 1e237e0 4f0769b 662b101 4f0769b 9fbf2b6 4f0769b bcd9f0c 4f0769b 662b101 4f0769b 5b66c35 4f0769b 9fbf2b6 4f0769b 9fbf2b6 4f0769b f79ddf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
import os
import re
import pandas as pd
from pathlib import Path
from time import sleep
from tqdm import tqdm
from api_calls import *
ROOT_DIR = Path(__file__).resolve().parents[0]
def disable_btn():
return gr.Button.update(interactive=False)
def enable_btn():
return gr.Button.update(interactive=True)
def preview_uploaded_file(file_paths):
if file_paths:
return gr.update(value=file_paths[0])
else:
return gr.update(value=None)
def open_data_check(checked):
if checked:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def uploaded_file_process(file_path, ocr_model_choice):
name, filetype = Path(file_path).parts[-1].split(".")[0], Path(file_path).parts[-1].split(".")[-1]
print(name)
ocr_extracted_data = api_ocr(
image_filepath=file_path, model_provider=ocr_model_choice)
return ocr_extracted_data
def reference_from_file(file_paths, ocr_model_choice="Gemini Pro Vision"):
data_array = []
for file_path in tqdm(file_paths):
data = uploaded_file_process(file_path, ocr_model_choice=ocr_model_choice)
data_array.append(data)
sleep(1)
return data_array
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def bot(query, history, data_array, file_paths, qa_prompt_tmpl, checkbox_replace):
if data_array:
params = {"query": query, "filtered_data": data_array}
else:
params = {"query": query}
if checkbox_replace:
params.update({"prompt_template": qa_prompt_tmpl})
if not file_paths or "大台北" in file_paths:
func = api_qa_waterfee
else:
func = api_qa_normal
response = func(**params)
full_anwser = ""
for chunk in response.iter_content(chunk_size=32):
if chunk:
try:
_c = chunk.decode('utf-8')
except UnicodeDecodeError:
_c = " "
full_anwser += _c
yield full_anwser
# print(_c, flush=True, end="")
# for character in response:
# full_anwser += character
# yield full_anwser
def cat_report_explanation(data_array):
response = api_qa_cat_report(data_array)
full_anwser = ""
for chunk in response.iter_content(chunk_size=32):
if chunk:
try:
_c = chunk.decode('utf-8')
except UnicodeDecodeError:
_c = " "
full_anwser += _c
yield full_anwser
def draw_cat_pain_assessment_result(user_input_image):
if user_input_image:
json_result = api_model_cat_pain_assessment(user_input_image)
print(json_result)
total_score = sum(list(json_result.values()))
df_result = pd.DataFrame(json_result, index=[0]).T.reset_index()
df_result.columns = ["a", "b"]
return gr.BarPlot(
df_result,
x="a",
y="b",
x_title="Aspects",
y_title="Score",
title="Cat Pain Assessment",
vertical=False,
height=400,
width=800,
tooltip=["a", "b"],
y_lim=[0, 2],
scale=1,
), gr.HTML(
'<h3>Total Score</h3>'
f'<span style="font-size: 50px;">{total_score}</span>'
'<span style="font-size: 40px;">/10</span>'
), gr.HTML(
'<h3>Explanation</h3>'
'<p>Ear position: 0-2</p>'
'<p>Orbital tightening: 0-2</p>'
'<p>Muzzle tension: 0-2</p>'
'<p>Whiskers change: 0-2</p>'
'<p>Head position: 0-2</p>'
)
else:
return gr.update(value=None)
chatbot = gr.Chatbot(
[(None, "我是 ESG AI Chat\n有什麼能為您服務的嗎?")],
elem_id="chatbot",
scale=1,
height=700,
bubble_full_width=False
)
css = """
#examples_file_to_ocr {color: green !important}
#center {text-align: center}
footer {visibility: hidden}
a {color: rgb(255, 206, 10) !important}
"""
with gr.Blocks(css=css, theme=gr.themes.Monochrome(neutral_hue="green")) as demo:
gr.HTML("<h1>GlobalModelAI AI Product Test</h1><p>Made by `GlobalModelAI Abao`</p>", elem_id="center")
with gr.Tab("OCR + Text2SQL"):
with gr.Row():
with gr.Column():
gr.Markdown("## OCR Processing", elem_id="center")
ocr_model_choice = gr.Dropdown(label="Model", value="Gemini Pro Vision", choices=["GPT-4", "Gemini Pro Vision"])
file_preview = gr.Image(type="filepath", image_mode="RGB", sources=None, label="File Preview")
file_upload = gr.File(label="Upload File", file_types=["png", "jpg", "jpeg", "helc"], file_count='multiple')
checkbox_open_data_check = gr.Checkbox(label="Open Data Check")
text_data_from_file_check = gr.Textbox(label="File Upload Status", interactive=False, visible=False)
gr.Examples(
examples=[
[[f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-esg_report_table.png"]],
[[f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-esg_report_table2.png"],
[f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-esg_report_table3.png"]],
[[f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-medical_thesis_table.png"],
[f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-medical_thesis_table2.jpg"]],
],
inputs=file_upload,
outputs=text_data_from_file_check,
fn=reference_from_file,
cache_examples=True,
elem_id="examples_file_to_ocr"
)
with gr.Column():
gr.Markdown("## Chat with your data", elem_id="center")
with gr.Accordion("Revise Your Prompt", open=False):
checkbox_replace = gr.Checkbox(label="Replace with new prompt")
qa_prompt_tmpl = gr.Textbox(
label="希望用於本次問答的prompt",
info="必須使用到的變數:{filtered_data}、{query}",
value="",
interactive=True,
)
chat_interface = gr.ChatInterface(
fn=bot,
additional_inputs=[text_data_from_file_check, file_upload, qa_prompt_tmpl, checkbox_replace],
chatbot=chatbot,
)
chatbot.like(print_like_dislike, None, None)
with gr.Tab("Cat Pain Assessment Model"):
gr.Markdown("## Cat Pain Assessment Model", elem_id="center")
with gr.Row():
user_input_image = gr.Image(
type="filepath", image_mode="RGB",
sources=["upload", "webcam", "clipboard"],
label="Upload a cat image")
with gr.Column():
cat_pain_assessment_barplot = gr.BarPlot(label="Cat Pain Assessment")
cat_pain_assessment_score = gr.HTML(elem_id="center")
cat_pain_assessment_explanation = gr.HTML()
gr.Examples(
examples=[
[f"{ROOT_DIR}/data/cat_pain_detection/fgs_cat_examples/5f2afc_3c44de4afb8345a2a56828e3dd166f41~mv2.jpg"],
[f"{ROOT_DIR}/data/cat_pain_detection/fgs_cat_examples/5f2afc_9d9838561cde41d3b2dc9ef079dc2303~mv2.jpg"],
[f"{ROOT_DIR}/data/cat_pain_detection/fgs_cat_examples/5f2afc_da95c2a1a3294701a007d34ec02f62a5~mv2.jpg"],
],
inputs=user_input_image,
outputs=[cat_pain_assessment_barplot, cat_pain_assessment_score, cat_pain_assessment_explanation],
fn=draw_cat_pain_assessment_result,
cache_examples=True,
)
with gr.Tab("Cat Report Explanation"):
gr.Markdown("## Cat Report Explanation", elem_id="center")
with gr.Row():
with gr.Column():
gr.Markdown("## Report Processing", elem_id="center")
catrep_ocr_model_choice = gr.Dropdown(label="Model", value="Gemini Pro Vision", choices=["GPT-4", "Gemini Pro Vision"])
catrep_file_preview = gr.Image(type="filepath", image_mode="RGB", sources=None, label="File Preview")
catrep_file_upload = gr.File(label="Upload File", file_types=["png", "jpg", "jpeg", "helc"], file_count='multiple')
catrep_button_generation_explanation = gr.Button("Start Explanation")
catrep_checkbox_open_data_check = gr.Checkbox(label="Open Data Check")
catrep_text_data_from_file_check = gr.Textbox(label="File Upload Status", interactive=False, visible=False)
gr.Examples(
examples=[
[[f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-cat_report_12.png"]]
],
inputs=catrep_file_upload,
outputs=catrep_text_data_from_file_check,
fn=reference_from_file,
cache_examples=True,
elem_id="examples_file_to_ocr"
)
with gr.Column():
gr.Markdown("### View Explanation", elem_id="center")
catrep_textbox_explanation = gr.Textbox(
label="Explanation",
placeholder="Explanation will show here after you upload image & click the button",
interactive=False,
)
# Callbacks
## OCR + Text2SQL
file_upload.upload(
reference_from_file, [file_upload, ocr_model_choice], [text_data_from_file_check]
)
file_upload.change(
preview_uploaded_file, [file_upload], [file_preview]
)
ocr_model_choice.change(
reference_from_file, [file_upload, ocr_model_choice], [text_data_from_file_check]
)
checkbox_open_data_check.select(
open_data_check, [checkbox_open_data_check], [text_data_from_file_check]
)
## Cat Pain Assessment Model
user_input_image.change(
draw_cat_pain_assessment_result, [user_input_image],
[cat_pain_assessment_barplot, cat_pain_assessment_score, cat_pain_assessment_explanation]
)
## Cat Report Explanation
catrep_file_upload.upload(
reference_from_file, [catrep_file_upload, catrep_ocr_model_choice], [catrep_text_data_from_file_check]
)
catrep_file_upload.change(
preview_uploaded_file, [catrep_file_upload], [catrep_file_preview]
)
catrep_ocr_model_choice.change(
reference_from_file, [catrep_file_upload, catrep_ocr_model_choice], [catrep_text_data_from_file_check]
)
catrep_checkbox_open_data_check.select(
open_data_check, [catrep_checkbox_open_data_check], [catrep_text_data_from_file_check]
)
catrep_button_generation_explanation.click(
cat_report_explanation, [catrep_text_data_from_file_check], [catrep_textbox_explanation]
)
if __name__ == "__main__":
demo.queue().launch(max_threads=10)
|