File size: 5,674 Bytes
66211f5 7b4781e 66211f5 146c1d1 66211f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.memory import ConversationBufferMemory
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.schema.runnable import RunnableLambda
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.retrieval_qa.base import RetrievalQA
import io
import contextlib
from PIL import Image
import unittest
from unittest.mock import patch
df = pd.read_csv('Global_Superstore2.csv', encoding='ISO-8859-1')
schema_info = "\n".join([f"- `{col}` ({dtype})" for col, dtype in df.dtypes.items()])
history_df = pd.read_csv('sample_requests_and_code_300plus.csv')
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
faiss_index = FAISS.from_texts(history_df['request'].tolist(), embeddings)
retriever = faiss_index.as_retriever()
# Load the model
model_name = "neuralmagic/Llama-2-7b-chat-quantized.w4a16"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Create a text-generation pipeline
small_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
trust_remote_code=True,
device_map="auto",
max_new_tokens=250,
temperature=0.2,
top_p=0.9,
do_sample=True,
repetition_penalty=1.1,
pad_token_id=tokenizer.eos_token_id
)
llm = HuggingFacePipeline(pipeline=small_pipeline)
memory = ConversationBufferMemory()
retrieval_qa = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, chain_type="stuff")
def generate_prompt(user_query, schema_info):
retrieved_docs = retrieval_qa.run(user_query)
similar_doc = retriever.get_relevant_documents(user_query, k=1)
similar_code = ""
if similar_doc:
idx = similar_doc[0].metadata.get('index', None)
if idx is not None:
similar_code = history_df.iloc[idx]['code']
messages = [
{"role": "system", "content": f"""
You are an expert data analyst. Your response MUST:
- Return ONLY valid Python Pandas code (no text, no introductions, no explanations, no extra comments).
- β οΈ Start IMMEDIATELY with the Python code block.
- β‘ Use proper parentheses when using logical operators (&, |) in Pandas conditions.
- Always include necessary import statements.
- β‘ Do NOT add ANY extra lines, comments, or explanations.
{f"- Reference similar code: {similar_code}" if similar_code else ""}
"""},
{"role": "user", "content": f"""
Dataset Schema:
{retrieved_docs}
Query: {user_query}
"""}
]
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
return prompt
def execute_generated_code(code):
local_env = {}
output = io.StringIO()
plt.close('all')
with contextlib.redirect_stdout(output), contextlib.redirect_stderr(output):
try:
exec(code, globals(), local_env)
if plt.get_fignums():
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
return img
return None
except Exception:
return None
def process_query(user_query):
prompt = generate_prompt(user_query, schema_info)
llm_chain = RunnableLambda(lambda x: llm(x["user_query"]))
response = llm_chain.invoke({"user_query": prompt})
generated_code = response.strip()
if "```python" in generated_code:
generated_code = generated_code.split("```python")[1].split("```", 1)[0].strip()
elif "```" in generated_code:
generated_code = generated_code.split("```", 1)[1].split("```", 1)[0].strip()
return generated_code
def gradio_chat_interface(history, query):
history.append((query, "β³ **Processing...**"))
yield history, None, ""
generated_code = process_query(query)
with open('/content/generated_code.py', 'w') as f:
f.write(generated_code)
image = execute_generated_code(generated_code)
history[-1] = (query, f"```python\n{generated_code}\n```) ")
yield history, image, ""
with gr.Blocks() as demo:
gr.Markdown("""
# **Interactive Pandas Chat with InsightAI** π¬
**Talk to your data, get instant answers!**
<div style="text-align: center;">
<table style="margin: 0 auto;">
<tr>
<td>π <strong>Explore your dataset!</strong></td>
<td>π» <strong>Instantly view generated Pandas code.</strong></td>
</tr>
<tr>
<td>π <strong>Get accurate responses with RAG-enhanced retrieval.</strong></td>
<td>π <strong>Live visualizations update on the right.</strong></td>
</tr>
</table>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Chat with RAG & Historical Context Expert")
query_input = gr.Textbox(placeholder="Type your query and press Enter...", label="Your Query")
with gr.Column(scale=2):
plot_output = gr.Image(label="π Visualization", height=500)
query_input.submit(
fn=gradio_chat_interface,
inputs=[chatbot, query_input],
outputs=[chatbot, plot_output, query_input]
)
demo.launch() |