File size: 5,674 Bytes
66211f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b4781e
66211f5
 
146c1d1
66211f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.memory import ConversationBufferMemory
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.schema.runnable import RunnableLambda
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.retrieval_qa.base import RetrievalQA
import io
import contextlib
from PIL import Image
import unittest
from unittest.mock import patch

df = pd.read_csv('Global_Superstore2.csv', encoding='ISO-8859-1')
schema_info = "\n".join([f"- `{col}` ({dtype})" for col, dtype in df.dtypes.items()])

history_df = pd.read_csv('sample_requests_and_code_300plus.csv')
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
faiss_index = FAISS.from_texts(history_df['request'].tolist(), embeddings)
retriever = faiss_index.as_retriever()


# Load the model
model_name = "neuralmagic/Llama-2-7b-chat-quantized.w4a16"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Create a text-generation pipeline
small_pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    trust_remote_code=True,
    device_map="auto",
    max_new_tokens=250,
    temperature=0.2,
    top_p=0.9,
    do_sample=True,
    repetition_penalty=1.1,
    pad_token_id=tokenizer.eos_token_id
)

llm = HuggingFacePipeline(pipeline=small_pipeline)
memory = ConversationBufferMemory()
retrieval_qa = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, chain_type="stuff")


def generate_prompt(user_query, schema_info):
    retrieved_docs = retrieval_qa.run(user_query)

    similar_doc = retriever.get_relevant_documents(user_query, k=1)
    similar_code = ""
    if similar_doc:
        idx = similar_doc[0].metadata.get('index', None)
        if idx is not None:
            similar_code = history_df.iloc[idx]['code']

    messages = [
        {"role": "system", "content": f"""
        You are an expert data analyst. Your response MUST:
        - Return ONLY valid Python Pandas code (no text, no introductions, no explanations, no extra comments).
        - ⚠️ Start IMMEDIATELY with the Python code block.
        - ⚑ Use proper parentheses when using logical operators (&, |) in Pandas conditions.
        - Always include necessary import statements.
        - ⚑ Do NOT add ANY extra lines, comments, or explanations.
        {f"- Reference similar code: {similar_code}" if similar_code else ""}
        """},
        {"role": "user", "content": f"""
        Dataset Schema:
        {retrieved_docs}

        Query: {user_query}
        """}
    ]
    prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
    return prompt


def execute_generated_code(code):
    local_env = {}
    output = io.StringIO()
    plt.close('all')
    with contextlib.redirect_stdout(output), contextlib.redirect_stderr(output):
        try:
            exec(code, globals(), local_env)
            if plt.get_fignums():
                buf = io.BytesIO()
                plt.savefig(buf, format='png')
                buf.seek(0)
                img = Image.open(buf)
                return img
            return None
        except Exception:
            return None


def process_query(user_query):
    prompt = generate_prompt(user_query, schema_info)
    llm_chain = RunnableLambda(lambda x: llm(x["user_query"]))
    response = llm_chain.invoke({"user_query": prompt})
    generated_code = response.strip()
    if "```python" in generated_code:
        generated_code = generated_code.split("```python")[1].split("```", 1)[0].strip()
    elif "```" in generated_code:
        generated_code = generated_code.split("```", 1)[1].split("```", 1)[0].strip()
    return generated_code



def gradio_chat_interface(history, query):
    history.append((query, "⏳ **Processing...**"))
    yield history, None, ""
    generated_code = process_query(query)
    with open('/content/generated_code.py', 'w') as f:
        f.write(generated_code)
    image = execute_generated_code(generated_code)
    history[-1] = (query, f"```python\n{generated_code}\n```) ")
    yield history, image, ""

with gr.Blocks() as demo:
    gr.Markdown("""
    # **Interactive Pandas Chat with InsightAI** πŸ’¬
    **Talk to your data, get instant answers!**

    <div style="text-align: center;">
        <table style="margin: 0 auto;">
            <tr>
                <td>πŸ” <strong>Explore your dataset!</strong></td>
                <td>πŸ’» <strong>Instantly view generated Pandas code.</strong></td>
            </tr>
            <tr>
                <td>πŸ“Š <strong>Get accurate responses with RAG-enhanced retrieval.</strong></td>
                <td>πŸ“ˆ <strong>Live visualizations update on the right.</strong></td>
            </tr>
        </table>
    </div>
    """)
    with gr.Row():
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(label="Chat with RAG & Historical Context Expert")
            query_input = gr.Textbox(placeholder="Type your query and press Enter...", label="Your Query")

        with gr.Column(scale=2):
            plot_output = gr.Image(label="πŸ“Š Visualization", height=500)

    query_input.submit(
        fn=gradio_chat_interface,
        inputs=[chatbot, query_input],
        outputs=[chatbot, plot_output, query_input]
    )

demo.launch()