InsightAI / sample_requests_and_code_300plus.csv
GloryIX's picture
Upload 2 files
2ac4f99 verified
raw
history blame
50.1 kB
request,code
"Get all orders from 'Brazil' where sales are greater than 1321, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1321)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Display total sales by category and segment in a stacked bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
sales_summary = df.groupby(['Category', 'Segment'])['Sales'].sum().unstack()
sales_summary.plot(kind='bar', stacked=True, title='Total Sales by Category and Segment')
plt.ylabel('Total Sales')
plt.xlabel('Category')
plt.show()
"
Compare shipping modes by total sales for 'France' in 2015 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'France') & (df['Order Date'].str.contains('2015'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in France (2015)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Calculate average discount for 'Technology' category by segment and visualize using a bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
avg_discount = df[df['Category'] == 'Technology'].groupby('Segment')['Discount'].mean()
avg_discount.plot(kind='bar', title='Average Discount by Segment for Technology')
plt.ylabel('Average Discount')
plt.xlabel('Segment')
plt.show()
"
Plot the profit distribution for 'Corporate' segment in 2017.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Corporate') & (df['Order Date'].str.contains('2017'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Corporate Segment in 2017')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
Show the top 10 products by total profit in 'South' region.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_products = df[df['Region'] == 'South'].groupby('Product Name')['Profit'].sum().nlargest(10)
top_products.plot(kind='bar', title='Top 10 Products by Profit in South')
plt.ylabel('Total Profit')
plt.xlabel('Product Name')
plt.show()
"
"Get all orders from 'France' where sales are greater than 1936, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'France') & (df['Sales'] > 1936)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'United States' in 2017 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'United States') & (df['Order Date'].str.contains('2017'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in United States (2017)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Calculate average discount for 'Office Supplies' category by segment and visualize using a bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
avg_discount = df[df['Category'] == 'Office Supplies'].groupby('Segment')['Discount'].mean()
avg_discount.plot(kind='bar', title='Average Discount by Segment for Office Supplies')
plt.ylabel('Average Discount')
plt.xlabel('Segment')
plt.show()
"
Plot the profit distribution for 'Corporate' segment in 2014.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Corporate') & (df['Order Date'].str.contains('2014'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Corporate Segment in 2014')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
"Get all orders from 'France' where sales are greater than 1906, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'France') & (df['Sales'] > 1906)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'France' in 2014 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'France') & (df['Order Date'].str.contains('2014'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in France (2014)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Compare shipping modes by total sales for 'India' in 2014 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'India') & (df['Order Date'].str.contains('2014'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in India (2014)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'Saudi Arabia' where sales are greater than 949, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 949)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Canada' where sales are greater than 605, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Canada') & (df['Sales'] > 605)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Plot the profit distribution for 'Corporate' segment in 2015.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Corporate') & (df['Order Date'].str.contains('2015'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Corporate Segment in 2015')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
Show the top 10 products by total profit in 'West' region.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_products = df[df['Region'] == 'West'].groupby('Product Name')['Profit'].sum().nlargest(10)
top_products.plot(kind='bar', title='Top 10 Products by Profit in West')
plt.ylabel('Total Profit')
plt.xlabel('Product Name')
plt.show()
"
Show the top 10 products by total profit in 'Central' region.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_products = df[df['Region'] == 'Central'].groupby('Product Name')['Profit'].sum().nlargest(10)
top_products.plot(kind='bar', title='Top 10 Products by Profit in Central')
plt.ylabel('Total Profit')
plt.xlabel('Product Name')
plt.show()
"
Identify the top 5 cities by total sales in 'Saudi Arabia' and display a horizontal bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_cities = df[df['Country'] == 'Saudi Arabia'].groupby('City')['Sales'].sum().nlargest(5)
top_cities.plot(kind='barh', title='Top 5 Cities by Sales in Saudi Arabia')
plt.xlabel('Total Sales')
plt.ylabel('City')
plt.show()
"
"Get all orders from 'Saudi Arabia' where sales are greater than 1572, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1572)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Identify the top 5 cities by total sales in 'Brazil' and display a horizontal bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_cities = df[df['Country'] == 'Brazil'].groupby('City')['Sales'].sum().nlargest(5)
top_cities.plot(kind='barh', title='Top 5 Cities by Sales in Brazil')
plt.xlabel('Total Sales')
plt.ylabel('City')
plt.show()
"
Identify the top 5 cities by total sales in 'India' and display a horizontal bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_cities = df[df['Country'] == 'India'].groupby('City')['Sales'].sum().nlargest(5)
top_cities.plot(kind='barh', title='Top 5 Cities by Sales in India')
plt.xlabel('Total Sales')
plt.ylabel('City')
plt.show()
"
Calculate average discount for 'Furniture' category by segment and visualize using a bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
avg_discount = df[df['Category'] == 'Furniture'].groupby('Segment')['Discount'].mean()
avg_discount.plot(kind='bar', title='Average Discount by Segment for Furniture')
plt.ylabel('Average Discount')
plt.xlabel('Segment')
plt.show()
"
Identify the top 5 cities by total sales in 'Australia' and display a horizontal bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_cities = df[df['Country'] == 'Australia'].groupby('City')['Sales'].sum().nlargest(5)
top_cities.plot(kind='barh', title='Top 5 Cities by Sales in Australia')
plt.xlabel('Total Sales')
plt.ylabel('City')
plt.show()
"
"Get all orders from 'Brazil' where sales are greater than 601, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 601)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Saudi Arabia' where sales are greater than 534, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 534)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Identify the top 5 cities by total sales in 'Germany' and display a horizontal bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_cities = df[df['Country'] == 'Germany'].groupby('City')['Sales'].sum().nlargest(5)
top_cities.plot(kind='barh', title='Top 5 Cities by Sales in Germany')
plt.xlabel('Total Sales')
plt.ylabel('City')
plt.show()
"
Compare shipping modes by total sales for 'Saudi Arabia' in 2014 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Saudi Arabia') & (df['Order Date'].str.contains('2014'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Saudi Arabia (2014)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Compare shipping modes by total sales for 'Brazil' in 2014 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Brazil') & (df['Order Date'].str.contains('2014'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Brazil (2014)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'United States' where sales are greater than 1742, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'United States') & (df['Sales'] > 1742)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Plot the profit distribution for 'Home Office' segment in 2016.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Home Office') & (df['Order Date'].str.contains('2016'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Home Office Segment in 2016')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
"Get all orders from 'Brazil' where sales are greater than 1440, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1440)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'France' in 2017 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'France') & (df['Order Date'].str.contains('2017'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in France (2017)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Plot the profit distribution for 'Consumer' segment in 2014.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Consumer') & (df['Order Date'].str.contains('2014'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Consumer Segment in 2014')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
Show the top 10 products by total profit in 'East' region.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_products = df[df['Region'] == 'East'].groupby('Product Name')['Profit'].sum().nlargest(10)
top_products.plot(kind='bar', title='Top 10 Products by Profit in East')
plt.ylabel('Total Profit')
plt.xlabel('Product Name')
plt.show()
"
Plot the profit distribution for 'Consumer' segment in 2017.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Consumer') & (df['Order Date'].str.contains('2017'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Consumer Segment in 2017')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
Plot the profit distribution for 'Corporate' segment in 2016.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Corporate') & (df['Order Date'].str.contains('2016'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Corporate Segment in 2016')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
Compare shipping modes by total sales for 'United States' in 2015 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'United States') & (df['Order Date'].str.contains('2015'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in United States (2015)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Plot the profit distribution for 'Consumer' segment in 2016.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Consumer') & (df['Order Date'].str.contains('2016'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Consumer Segment in 2016')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
Compare shipping modes by total sales for 'Germany' in 2014 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Germany') & (df['Order Date'].str.contains('2014'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Germany (2014)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'Australia' where sales are greater than 921, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Australia') & (df['Sales'] > 921)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Plot the profit distribution for 'Home Office' segment in 2017.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Home Office') & (df['Order Date'].str.contains('2017'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Home Office Segment in 2017')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
Compare shipping modes by total sales for 'Australia' in 2016 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Australia') & (df['Order Date'].str.contains('2016'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Australia (2016)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Compare shipping modes by total sales for 'Germany' in 2015 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Germany') & (df['Order Date'].str.contains('2015'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Germany (2015)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Plot the profit distribution for 'Home Office' segment in 2014.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Home Office') & (df['Order Date'].str.contains('2014'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Home Office Segment in 2014')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
Plot the profit distribution for 'Consumer' segment in 2015.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Consumer') & (df['Order Date'].str.contains('2015'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Consumer Segment in 2015')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
"Get all orders from 'Germany' where sales are greater than 1124, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Germany') & (df['Sales'] > 1124)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Germany' where sales are greater than 638, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Germany') & (df['Sales'] > 638)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Canada' where sales are greater than 1004, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1004)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Plot the profit distribution for 'Home Office' segment in 2015.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Segment'] == 'Home Office') & (df['Order Date'].str.contains('2015'))]
plt.hist(df_filtered['Profit'], bins=20, alpha=0.7)
plt.title('Profit Distribution for Home Office Segment in 2015')
plt.xlabel('Profit')
plt.ylabel('Frequency')
plt.show()
"
Identify the top 5 cities by total sales in 'United States' and display a horizontal bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_cities = df[df['Country'] == 'United States'].groupby('City')['Sales'].sum().nlargest(5)
top_cities.plot(kind='barh', title='Top 5 Cities by Sales in United States')
plt.xlabel('Total Sales')
plt.ylabel('City')
plt.show()
"
"Get all orders from 'India' where sales are greater than 1567, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'India') & (df['Sales'] > 1567)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Germany' where sales are greater than 1159, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Germany') & (df['Sales'] > 1159)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'Brazil' in 2015 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Brazil') & (df['Order Date'].str.contains('2015'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Brazil (2015)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'Canada' where sales are greater than 1796, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1796)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'France' where sales are greater than 511, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'France') & (df['Sales'] > 511)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'United States' where sales are greater than 799, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'United States') & (df['Sales'] > 799)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Australia' where sales are greater than 1156, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Australia') & (df['Sales'] > 1156)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Canada' where sales are greater than 788, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Canada') & (df['Sales'] > 788)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'Germany' in 2016 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Germany') & (df['Order Date'].str.contains('2016'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Germany (2016)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'Canada' where sales are greater than 1600, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1600)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Brazil' where sales are greater than 1121, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1121)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'Germany' in 2017 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Germany') & (df['Order Date'].str.contains('2017'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Germany (2017)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'India' where sales are greater than 1106, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'India') & (df['Sales'] > 1106)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Saudi Arabia' where sales are greater than 1805, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1805)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Saudi Arabia' where sales are greater than 1622, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1622)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'Brazil' in 2017 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Brazil') & (df['Order Date'].str.contains('2017'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Brazil (2017)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Compare shipping modes by total sales for 'Saudi Arabia' in 2017 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Saudi Arabia') & (df['Order Date'].str.contains('2017'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Saudi Arabia (2017)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Compare shipping modes by total sales for 'Saudi Arabia' in 2015 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Saudi Arabia') & (df['Order Date'].str.contains('2015'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Saudi Arabia (2015)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Compare shipping modes by total sales for 'Brazil' in 2016 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Brazil') & (df['Order Date'].str.contains('2016'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Brazil (2016)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'Brazil' where sales are greater than 905, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 905)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Brazil' where sales are greater than 605, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 605)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Germany' where sales are greater than 1875, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Germany') & (df['Sales'] > 1875)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Identify the top 5 cities by total sales in 'Canada' and display a horizontal bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_cities = df[df['Country'] == 'Canada'].groupby('City')['Sales'].sum().nlargest(5)
top_cities.plot(kind='barh', title='Top 5 Cities by Sales in Canada')
plt.xlabel('Total Sales')
plt.ylabel('City')
plt.show()
"
"Get all orders from 'France' where sales are greater than 1008, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'France') & (df['Sales'] > 1008)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Canada' where sales are greater than 1155, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1155)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'India' in 2017 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'India') & (df['Order Date'].str.contains('2017'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in India (2017)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'Saudi Arabia' where sales are greater than 1997, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1997)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Brazil' where sales are greater than 1635, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1635)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Canada' where sales are greater than 1670, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1670)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'India' in 2015 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'India') & (df['Order Date'].str.contains('2015'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in India (2015)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'United States' where sales are greater than 1338, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'United States') & (df['Sales'] > 1338)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'United States' where sales are greater than 1860, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'United States') & (df['Sales'] > 1860)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Saudi Arabia' where sales are greater than 1721, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1721)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Identify the top 5 cities by total sales in 'France' and display a horizontal bar chart.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
top_cities = df[df['Country'] == 'France'].groupby('City')['Sales'].sum().nlargest(5)
top_cities.plot(kind='barh', title='Top 5 Cities by Sales in France')
plt.xlabel('Total Sales')
plt.ylabel('City')
plt.show()
"
"Get all orders from 'India' where sales are greater than 736, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'India') & (df['Sales'] > 736)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'United States' where sales are greater than 808, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'United States') & (df['Sales'] > 808)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'France' where sales are greater than 1580, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'France') & (df['Sales'] > 1580)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'Australia' in 2017 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Australia') & (df['Order Date'].str.contains('2017'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Australia (2017)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Compare shipping modes by total sales for 'Canada' in 2014 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Canada') & (df['Order Date'].str.contains('2014'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Canada (2014)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Compare shipping modes by total sales for 'France' in 2016 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'France') & (df['Order Date'].str.contains('2016'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in France (2016)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'Germany' where sales are greater than 1507, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Germany') & (df['Sales'] > 1507)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
Compare shipping modes by total sales for 'United States' in 2014 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'United States') & (df['Order Date'].str.contains('2014'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in United States (2014)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
Compare shipping modes by total sales for 'Canada' in 2017 and plot the results.,"
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df_filtered = df[(df['Country'] == 'Canada') & (df['Order Date'].str.contains('2017'))]
ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum()
ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Canada (2017)')
plt.ylabel('Total Sales')
plt.xlabel('Shipping Mode')
plt.show()
"
"Get all orders from 'France' where sales are greater than 1791, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'France') & (df['Sales'] > 1791)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Brazil' where sales are greater than 1298, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1298)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'India' where sales are greater than 798, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'India') & (df['Sales'] > 798)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Saudi Arabia' where sales are greater than 1540, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1540)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Brazil' where sales are greater than 1908, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1908)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Canada' where sales are greater than 1220, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1220)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"
"Get all orders from 'Australia' where sales are greater than 1408, and plot the sales distribution.","
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1')
df = df[(df['Country'] == 'Australia') & (df['Sales'] > 1408)]
plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution')
plt.xlabel('Sales Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
"