request,code "Get all orders from 'Brazil' where sales are greater than 1321, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1321)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Display total sales by category and segment in a stacked bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') sales_summary = df.groupby(['Category', 'Segment'])['Sales'].sum().unstack() sales_summary.plot(kind='bar', stacked=True, title='Total Sales by Category and Segment') plt.ylabel('Total Sales') plt.xlabel('Category') plt.show() " Compare shipping modes by total sales for 'France' in 2015 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'France') & (df['Order Date'].str.contains('2015'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in France (2015)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Calculate average discount for 'Technology' category by segment and visualize using a bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') avg_discount = df[df['Category'] == 'Technology'].groupby('Segment')['Discount'].mean() avg_discount.plot(kind='bar', title='Average Discount by Segment for Technology') plt.ylabel('Average Discount') plt.xlabel('Segment') plt.show() " Plot the profit distribution for 'Corporate' segment in 2017.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Corporate') & (df['Order Date'].str.contains('2017'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Corporate Segment in 2017') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " Show the top 10 products by total profit in 'South' region.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_products = df[df['Region'] == 'South'].groupby('Product Name')['Profit'].sum().nlargest(10) top_products.plot(kind='bar', title='Top 10 Products by Profit in South') plt.ylabel('Total Profit') plt.xlabel('Product Name') plt.show() " "Get all orders from 'France' where sales are greater than 1936, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'France') & (df['Sales'] > 1936)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'United States' in 2017 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'United States') & (df['Order Date'].str.contains('2017'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in United States (2017)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Calculate average discount for 'Office Supplies' category by segment and visualize using a bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') avg_discount = df[df['Category'] == 'Office Supplies'].groupby('Segment')['Discount'].mean() avg_discount.plot(kind='bar', title='Average Discount by Segment for Office Supplies') plt.ylabel('Average Discount') plt.xlabel('Segment') plt.show() " Plot the profit distribution for 'Corporate' segment in 2014.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Corporate') & (df['Order Date'].str.contains('2014'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Corporate Segment in 2014') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " "Get all orders from 'France' where sales are greater than 1906, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'France') & (df['Sales'] > 1906)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'France' in 2014 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'France') & (df['Order Date'].str.contains('2014'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in France (2014)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Compare shipping modes by total sales for 'India' in 2014 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'India') & (df['Order Date'].str.contains('2014'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in India (2014)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'Saudi Arabia' where sales are greater than 949, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 949)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Canada' where sales are greater than 605, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Canada') & (df['Sales'] > 605)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Plot the profit distribution for 'Corporate' segment in 2015.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Corporate') & (df['Order Date'].str.contains('2015'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Corporate Segment in 2015') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " Show the top 10 products by total profit in 'West' region.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_products = df[df['Region'] == 'West'].groupby('Product Name')['Profit'].sum().nlargest(10) top_products.plot(kind='bar', title='Top 10 Products by Profit in West') plt.ylabel('Total Profit') plt.xlabel('Product Name') plt.show() " Show the top 10 products by total profit in 'Central' region.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_products = df[df['Region'] == 'Central'].groupby('Product Name')['Profit'].sum().nlargest(10) top_products.plot(kind='bar', title='Top 10 Products by Profit in Central') plt.ylabel('Total Profit') plt.xlabel('Product Name') plt.show() " Identify the top 5 cities by total sales in 'Saudi Arabia' and display a horizontal bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_cities = df[df['Country'] == 'Saudi Arabia'].groupby('City')['Sales'].sum().nlargest(5) top_cities.plot(kind='barh', title='Top 5 Cities by Sales in Saudi Arabia') plt.xlabel('Total Sales') plt.ylabel('City') plt.show() " "Get all orders from 'Saudi Arabia' where sales are greater than 1572, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1572)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Identify the top 5 cities by total sales in 'Brazil' and display a horizontal bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_cities = df[df['Country'] == 'Brazil'].groupby('City')['Sales'].sum().nlargest(5) top_cities.plot(kind='barh', title='Top 5 Cities by Sales in Brazil') plt.xlabel('Total Sales') plt.ylabel('City') plt.show() " Identify the top 5 cities by total sales in 'India' and display a horizontal bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_cities = df[df['Country'] == 'India'].groupby('City')['Sales'].sum().nlargest(5) top_cities.plot(kind='barh', title='Top 5 Cities by Sales in India') plt.xlabel('Total Sales') plt.ylabel('City') plt.show() " Calculate average discount for 'Furniture' category by segment and visualize using a bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') avg_discount = df[df['Category'] == 'Furniture'].groupby('Segment')['Discount'].mean() avg_discount.plot(kind='bar', title='Average Discount by Segment for Furniture') plt.ylabel('Average Discount') plt.xlabel('Segment') plt.show() " Identify the top 5 cities by total sales in 'Australia' and display a horizontal bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_cities = df[df['Country'] == 'Australia'].groupby('City')['Sales'].sum().nlargest(5) top_cities.plot(kind='barh', title='Top 5 Cities by Sales in Australia') plt.xlabel('Total Sales') plt.ylabel('City') plt.show() " "Get all orders from 'Brazil' where sales are greater than 601, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 601)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Saudi Arabia' where sales are greater than 534, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 534)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Identify the top 5 cities by total sales in 'Germany' and display a horizontal bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_cities = df[df['Country'] == 'Germany'].groupby('City')['Sales'].sum().nlargest(5) top_cities.plot(kind='barh', title='Top 5 Cities by Sales in Germany') plt.xlabel('Total Sales') plt.ylabel('City') plt.show() " Compare shipping modes by total sales for 'Saudi Arabia' in 2014 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Saudi Arabia') & (df['Order Date'].str.contains('2014'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Saudi Arabia (2014)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Compare shipping modes by total sales for 'Brazil' in 2014 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Brazil') & (df['Order Date'].str.contains('2014'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Brazil (2014)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'United States' where sales are greater than 1742, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'United States') & (df['Sales'] > 1742)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Plot the profit distribution for 'Home Office' segment in 2016.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Home Office') & (df['Order Date'].str.contains('2016'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Home Office Segment in 2016') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " "Get all orders from 'Brazil' where sales are greater than 1440, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1440)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'France' in 2017 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'France') & (df['Order Date'].str.contains('2017'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in France (2017)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Plot the profit distribution for 'Consumer' segment in 2014.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Consumer') & (df['Order Date'].str.contains('2014'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Consumer Segment in 2014') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " Show the top 10 products by total profit in 'East' region.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_products = df[df['Region'] == 'East'].groupby('Product Name')['Profit'].sum().nlargest(10) top_products.plot(kind='bar', title='Top 10 Products by Profit in East') plt.ylabel('Total Profit') plt.xlabel('Product Name') plt.show() " Plot the profit distribution for 'Consumer' segment in 2017.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Consumer') & (df['Order Date'].str.contains('2017'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Consumer Segment in 2017') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " Plot the profit distribution for 'Corporate' segment in 2016.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Corporate') & (df['Order Date'].str.contains('2016'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Corporate Segment in 2016') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " Compare shipping modes by total sales for 'United States' in 2015 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'United States') & (df['Order Date'].str.contains('2015'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in United States (2015)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Plot the profit distribution for 'Consumer' segment in 2016.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Consumer') & (df['Order Date'].str.contains('2016'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Consumer Segment in 2016') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " Compare shipping modes by total sales for 'Germany' in 2014 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Germany') & (df['Order Date'].str.contains('2014'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Germany (2014)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'Australia' where sales are greater than 921, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Australia') & (df['Sales'] > 921)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Plot the profit distribution for 'Home Office' segment in 2017.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Home Office') & (df['Order Date'].str.contains('2017'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Home Office Segment in 2017') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " Compare shipping modes by total sales for 'Australia' in 2016 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Australia') & (df['Order Date'].str.contains('2016'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Australia (2016)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Compare shipping modes by total sales for 'Germany' in 2015 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Germany') & (df['Order Date'].str.contains('2015'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Germany (2015)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Plot the profit distribution for 'Home Office' segment in 2014.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Home Office') & (df['Order Date'].str.contains('2014'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Home Office Segment in 2014') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " Plot the profit distribution for 'Consumer' segment in 2015.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Consumer') & (df['Order Date'].str.contains('2015'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Consumer Segment in 2015') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " "Get all orders from 'Germany' where sales are greater than 1124, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Germany') & (df['Sales'] > 1124)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Germany' where sales are greater than 638, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Germany') & (df['Sales'] > 638)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Canada' where sales are greater than 1004, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1004)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Plot the profit distribution for 'Home Office' segment in 2015.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Segment'] == 'Home Office') & (df['Order Date'].str.contains('2015'))] plt.hist(df_filtered['Profit'], bins=20, alpha=0.7) plt.title('Profit Distribution for Home Office Segment in 2015') plt.xlabel('Profit') plt.ylabel('Frequency') plt.show() " Identify the top 5 cities by total sales in 'United States' and display a horizontal bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_cities = df[df['Country'] == 'United States'].groupby('City')['Sales'].sum().nlargest(5) top_cities.plot(kind='barh', title='Top 5 Cities by Sales in United States') plt.xlabel('Total Sales') plt.ylabel('City') plt.show() " "Get all orders from 'India' where sales are greater than 1567, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'India') & (df['Sales'] > 1567)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Germany' where sales are greater than 1159, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Germany') & (df['Sales'] > 1159)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'Brazil' in 2015 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Brazil') & (df['Order Date'].str.contains('2015'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Brazil (2015)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'Canada' where sales are greater than 1796, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1796)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'France' where sales are greater than 511, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'France') & (df['Sales'] > 511)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'United States' where sales are greater than 799, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'United States') & (df['Sales'] > 799)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Australia' where sales are greater than 1156, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Australia') & (df['Sales'] > 1156)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Canada' where sales are greater than 788, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Canada') & (df['Sales'] > 788)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'Germany' in 2016 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Germany') & (df['Order Date'].str.contains('2016'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Germany (2016)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'Canada' where sales are greater than 1600, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1600)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Brazil' where sales are greater than 1121, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1121)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'Germany' in 2017 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Germany') & (df['Order Date'].str.contains('2017'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Germany (2017)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'India' where sales are greater than 1106, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'India') & (df['Sales'] > 1106)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Saudi Arabia' where sales are greater than 1805, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1805)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Saudi Arabia' where sales are greater than 1622, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1622)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'Brazil' in 2017 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Brazil') & (df['Order Date'].str.contains('2017'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Brazil (2017)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Compare shipping modes by total sales for 'Saudi Arabia' in 2017 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Saudi Arabia') & (df['Order Date'].str.contains('2017'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Saudi Arabia (2017)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Compare shipping modes by total sales for 'Saudi Arabia' in 2015 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Saudi Arabia') & (df['Order Date'].str.contains('2015'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Saudi Arabia (2015)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Compare shipping modes by total sales for 'Brazil' in 2016 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Brazil') & (df['Order Date'].str.contains('2016'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Brazil (2016)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'Brazil' where sales are greater than 905, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 905)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Brazil' where sales are greater than 605, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 605)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Germany' where sales are greater than 1875, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Germany') & (df['Sales'] > 1875)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Identify the top 5 cities by total sales in 'Canada' and display a horizontal bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_cities = df[df['Country'] == 'Canada'].groupby('City')['Sales'].sum().nlargest(5) top_cities.plot(kind='barh', title='Top 5 Cities by Sales in Canada') plt.xlabel('Total Sales') plt.ylabel('City') plt.show() " "Get all orders from 'France' where sales are greater than 1008, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'France') & (df['Sales'] > 1008)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Canada' where sales are greater than 1155, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1155)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'India' in 2017 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'India') & (df['Order Date'].str.contains('2017'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in India (2017)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'Saudi Arabia' where sales are greater than 1997, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1997)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Brazil' where sales are greater than 1635, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1635)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Canada' where sales are greater than 1670, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1670)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'India' in 2015 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'India') & (df['Order Date'].str.contains('2015'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in India (2015)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'United States' where sales are greater than 1338, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'United States') & (df['Sales'] > 1338)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'United States' where sales are greater than 1860, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'United States') & (df['Sales'] > 1860)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Saudi Arabia' where sales are greater than 1721, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1721)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Identify the top 5 cities by total sales in 'France' and display a horizontal bar chart.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') top_cities = df[df['Country'] == 'France'].groupby('City')['Sales'].sum().nlargest(5) top_cities.plot(kind='barh', title='Top 5 Cities by Sales in France') plt.xlabel('Total Sales') plt.ylabel('City') plt.show() " "Get all orders from 'India' where sales are greater than 736, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'India') & (df['Sales'] > 736)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'United States' where sales are greater than 808, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'United States') & (df['Sales'] > 808)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'France' where sales are greater than 1580, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'France') & (df['Sales'] > 1580)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'Australia' in 2017 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Australia') & (df['Order Date'].str.contains('2017'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Australia (2017)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Compare shipping modes by total sales for 'Canada' in 2014 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Canada') & (df['Order Date'].str.contains('2014'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Canada (2014)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Compare shipping modes by total sales for 'France' in 2016 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'France') & (df['Order Date'].str.contains('2016'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in France (2016)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'Germany' where sales are greater than 1507, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Germany') & (df['Sales'] > 1507)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " Compare shipping modes by total sales for 'United States' in 2014 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'United States') & (df['Order Date'].str.contains('2014'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in United States (2014)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " Compare shipping modes by total sales for 'Canada' in 2017 and plot the results.," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df_filtered = df[(df['Country'] == 'Canada') & (df['Order Date'].str.contains('2017'))] ship_sales = df_filtered.groupby('Ship Mode')['Sales'].sum() ship_sales.plot(kind='bar', title='Sales by Shipping Mode in Canada (2017)') plt.ylabel('Total Sales') plt.xlabel('Shipping Mode') plt.show() " "Get all orders from 'France' where sales are greater than 1791, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'France') & (df['Sales'] > 1791)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Brazil' where sales are greater than 1298, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1298)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'India' where sales are greater than 798, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'India') & (df['Sales'] > 798)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Saudi Arabia' where sales are greater than 1540, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Saudi Arabia') & (df['Sales'] > 1540)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Brazil' where sales are greater than 1908, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Brazil') & (df['Sales'] > 1908)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Canada' where sales are greater than 1220, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Canada') & (df['Sales'] > 1220)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() " "Get all orders from 'Australia' where sales are greater than 1408, and plot the sales distribution."," import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('/content/global-super-store-dataset/Global_Superstore2.csv', encoding='ISO-8859-1') df = df[(df['Country'] == 'Australia') & (df['Sales'] > 1408)] plt.hist(df['Sales'], bins=20, alpha=0.5, label='Sales Distribution') plt.xlabel('Sales Value') plt.ylabel('Frequency') plt.legend() plt.show() "