Spaces:
Sleeping
Sleeping
File size: 7,126 Bytes
bacf16b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import sys
import os
import pickle
import gzip
from pathlib import Path
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.figure import Figure
import torch
from scipy import stats
from gluformer.model import Gluformer
from utils.darts_processing import *
from utils.darts_dataset import *
import hashlib
from urllib.parse import urlparse
import numpy as np
import typer
glucose = Path(os.path.abspath(__file__)).parent.resolve()
file_directory = glucose / "files"
def plot_forecast(forecasts: np.ndarray, scalers: Any, dataset_test_glufo: Any, filename: str):
filename=filename
forecasts = (forecasts - scalers['target'].min_) / scalers['target'].scale_
trues = [dataset_test_glufo.evalsample(i) for i in range(len(dataset_test_glufo))]
trues = scalers['target'].inverse_transform(trues)
trues = [ts.values() for ts in trues] # Convert TimeSeries to numpy arrays
trues = np.array(trues)
inputs = [dataset_test_glufo[i][0] for i in range(len(dataset_test_glufo))]
inputs = (np.array(inputs) - scalers['target'].min_) / scalers['target'].scale_
# Plot settings
colors = ['#00264c', '#0a2c62', '#14437f', '#1f5a9d', '#2973bb', '#358ad9', '#4d9af4', '#7bb7ff', '#add5ff', '#e6f3ff']
cmap = mcolors.LinearSegmentedColormap.from_list('my_colormap', colors)
sns.set_theme(style="whitegrid")
# Generate the plot
fig, ax = plt.subplots(figsize=(10, 6))
# Select a specific sample to plot
ind = 30 # Example index
samples = np.random.normal(
loc=forecasts[ind, :], # Mean (center) of the distribution
scale=0.1, # Standard deviation (spread) of the distribution
size=(forecasts.shape[1], forecasts.shape[2])
)
#samples = samples.reshape(samples.shape[0], samples.shape[1], -1)
#print ("samples",samples.shape)
# Plot predictive distribution
for point in range(samples.shape[0]):
kde = stats.gaussian_kde(samples[point,:])
maxi, mini = 1.2 * np.max(samples[point, :]), 0.8 * np.min(samples[point, :])
y_grid = np.linspace(mini, maxi, 200)
x = kde(y_grid)
ax.fill_betweenx(y_grid, x1=point, x2=point - x * 15,
alpha=0.7,
edgecolor='black',
color=cmap(point / samples.shape[0]))
# Plot median
forecast = samples[:, :]
median = np.quantile(forecast, 0.5, axis=-1)
ax.plot(np.arange(12), median, color='red', marker='o')
# Plot true values
ax.plot(np.arange(-12, 12), np.concatenate([inputs[ind, -12:], trues[ind, :]]), color='blue')
# Add labels and title
ax.set_xlabel('Time (in 5 minute intervals)')
ax.set_ylabel('Glucose (mg/dL)')
ax.set_title(f'Gluformer Prediction with Gradient for dateset')
# Adjust font sizes
ax.xaxis.label.set_fontsize(16)
ax.yaxis.label.set_fontsize(16)
ax.title.set_fontsize(18)
for item in ax.get_xticklabels() + ax.get_yticklabels():
item.set_fontsize(14)
# Save figure
plt.tight_layout()
where = file_directory /filename
plt.savefig(str(where), dpi=300, bbox_inches='tight')
return where,ax
def generate_filename_from_url(url: str, extension: str = "png") -> str:
"""
:param url:
:param extension:
:return:
"""
# Extract the last segment of the URL
last_segment = urlparse(url).path.split('/')[-1]
# Compute the hash of the URL
url_hash = hashlib.md5(url.encode('utf-8')).hexdigest()
# Create the filename
filename = f"{last_segment.replace('.','_')}_{url_hash}.{extension}"
return filename
def predict_glucose_tool(url: str= 'https://huggingface.co/datasets/Livia-Zaharia/glucose_processed/blob/main/livia_mini.csv',
model: str = 'https://huggingface.co/Livia-Zaharia/gluformer_models/blob/main/gluformer_1samples_10000epochs_10heads_32batch_geluactivation_livia_mini_weights.pth'
) -> Figure:
"""
Function to predict future glucose of user. It receives URL with users csv. It will run an ML and will return URL with predictions that user can open on her own..
:param url: of the csv file with glucose values
:param model: model that is used to predict the glucose
:param explain if it should give both url and explanation
:param if the person is diabetic when doing prediction and explanation
:return:
"""
formatter, series, scalers = load_data(url=str(url), config_path=file_directory / "config.yaml", use_covs=True,
cov_type='dual',
use_static_covs=True)
filename = generate_filename_from_url(url)
formatter.params['gluformer'] = {
'in_len': 96, # example input length, adjust as necessary
'd_model': 512, # model dimension
'n_heads': 10, # number of attention heads##############################################################################
'd_fcn': 1024, # fully connected layer dimension
'num_enc_layers': 2, # number of encoder layers
'num_dec_layers': 2, # number of decoder layers
'length_pred': 12 # prediction length, adjust as necessary
}
num_dynamic_features = series['train']['future'][-1].n_components
num_static_features = series['train']['static'][-1].n_components
glufo = Gluformer(
d_model=formatter.params['gluformer']['d_model'],
n_heads=formatter.params['gluformer']['n_heads'],
d_fcn=formatter.params['gluformer']['d_fcn'],
r_drop=0.2,
activ='gelu',
num_enc_layers=formatter.params['gluformer']['num_enc_layers'],
num_dec_layers=formatter.params['gluformer']['num_dec_layers'],
distil=True,
len_seq=formatter.params['gluformer']['in_len'],
label_len=formatter.params['gluformer']['in_len'] // 3,
len_pred=formatter.params['length_pred'],
num_dynamic_features=num_dynamic_features,
num_static_features=num_static_features
)
weights = gr.Interface.load(model)
assert f"weights for {model} should exist", weights.exists()
device = "cuda" if torch.cuda.is_available() else "cpu"
glufo.load_state_dict(torch.load(str(weights), map_location=torch.device(device), weights_only=False))
# Define dataset for inference
dataset_test_glufo = SamplingDatasetInferenceDual(
target_series=series['test']['target'],
covariates=series['test']['future'],
input_chunk_length=formatter.params['gluformer']['in_len'],
output_chunk_length=formatter.params['length_pred'],
use_static_covariates=True,
array_output_only=True
)
forecasts, _ = glufo.predict(
dataset_test_glufo,
batch_size=16,####################################################
num_samples=10,
device='cpu'
)
figure_path, result = plot_forecast(forecasts, scalers, dataset_test_glufo,filename)
return result
if __name__ == "__main__":
predict_glucose_tool()
|