File size: 12,416 Bytes
8fe62ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import einops
from collections import OrderedDict
from functools import partial
from typing import Callable
import torch
import torch.nn as nn
import torchvision
from torch.utils.checkpoint import checkpoint
from accelerate.utils import set_module_tensor_to_device
from diffusers.models.embeddings import apply_rotary_emb, FluxPosEmbed
from diffusers.models.modeling_utils import ModelMixin
from diffusers.configuration_utils import ConfigMixin
from diffusers.loaders import FromOriginalModelMixin
class MLPBlock(torchvision.ops.misc.MLP):
"""Transformer MLP block."""
_version = 2
def __init__(self, in_dim: int, mlp_dim: int, dropout: float):
super().__init__(in_dim, [mlp_dim, in_dim], activation_layer=nn.GELU, inplace=None, dropout=dropout)
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.normal_(m.bias, std=1e-6)
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
version = local_metadata.get("version", None)
if version is None or version < 2:
# Replacing legacy MLPBlock with MLP. See https://github.com/pytorch/vision/pull/6053
for i in range(2):
for type in ["weight", "bias"]:
old_key = f"{prefix}linear_{i+1}.{type}"
new_key = f"{prefix}{3*i}.{type}"
if old_key in state_dict:
state_dict[new_key] = state_dict.pop(old_key)
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
)
class EncoderBlock(nn.Module):
"""Transformer encoder block."""
def __init__(
self,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float,
attention_dropout: float,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
):
super().__init__()
self.num_heads = num_heads
self.hidden_dim = hidden_dim
self.num_heads = num_heads
# Attention block
self.ln_1 = norm_layer(hidden_dim)
self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True)
self.dropout = nn.Dropout(dropout)
# MLP block
self.ln_2 = norm_layer(hidden_dim)
self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)
def forward(self, input: torch.Tensor, freqs_cis):
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
B, L, C = input.shape
x = self.ln_1(input)
if freqs_cis is not None:
query = x.view(B, L, self.num_heads, self.hidden_dim // self.num_heads).transpose(1, 2)
query = apply_rotary_emb(query, freqs_cis)
query = query.transpose(1, 2).reshape(B, L, self.hidden_dim)
x, _ = self.self_attention(query, query, x, need_weights=False)
x = self.dropout(x)
x = x + input
y = self.ln_2(x)
y = self.mlp(y)
return x + y
class Encoder(nn.Module):
"""Transformer Model Encoder for sequence to sequence translation."""
def __init__(
self,
seq_length: int,
num_layers: int,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float,
attention_dropout: float,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
):
super().__init__()
# Note that batch_size is on the first dim because
# we have batch_first=True in nn.MultiAttention() by default
# self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT
self.dropout = nn.Dropout(dropout)
layers: OrderedDict[str, nn.Module] = OrderedDict()
for i in range(num_layers):
layers[f"encoder_layer_{i}"] = EncoderBlock(
num_heads,
hidden_dim,
mlp_dim,
dropout,
attention_dropout,
norm_layer,
)
self.layers = nn.Sequential(layers)
self.ln = norm_layer(hidden_dim)
def forward(self, input: torch.Tensor, freqs_cis):
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
input = input # + self.pos_embedding
x = self.dropout(input)
for l in self.layers:
x = checkpoint(l, x, freqs_cis)
x = self.ln(x)
return x
class ViTEncoder(nn.Module):
def __init__(self, arch='vit-b/32'):
super().__init__()
self.arch = arch
if self.arch == 'vit-b/32':
ch = 768
layers = 12
heads = 12
elif self.arch == 'vit-h/14':
ch = 1280
layers = 32
heads = 16
self.encoder = Encoder(
seq_length=-1,
num_layers=layers,
num_heads=heads,
hidden_dim=ch,
mlp_dim=ch*4,
dropout=0.0,
attention_dropout=0.0,
)
self.fc_in = nn.Linear(16, ch)
self.fc_out = nn.Linear(ch, 256)
if self.arch == 'vit-b/32':
from torchvision.models.vision_transformer import vit_b_32, ViT_B_32_Weights
vit = vit_b_32(weights=ViT_B_32_Weights.DEFAULT)
elif self.arch == 'vit-h/14':
from torchvision.models.vision_transformer import vit_h_14, ViT_H_14_Weights
vit = vit_h_14(weights=ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1)
missing_keys, unexpected_keys = self.encoder.load_state_dict(vit.encoder.state_dict(), strict=False)
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
print(f"ViT Encoder Missing keys: {missing_keys}")
print(f"ViT Encoder Unexpected keys: {unexpected_keys}")
del vit
def forward(self, x, freqs_cis):
out = self.fc_in(x)
out = self.encoder(out, freqs_cis)
out = checkpoint(self.fc_out, out)
return out
def patchify(x, patch_size=8):
if len(x.shape) == 4:
bs, c, h, w = x.shape
x = einops.rearrange(x, "b c (h p1) (w p2) -> b (c p1 p2) h w", p1=patch_size, p2=patch_size)
elif len(x.shape) == 3:
c, h, w = x.shape
x = einops.rearrange(x, "c (h p1) (w p2) -> (c p1 p2) h w", p1=patch_size, p2=patch_size)
return x
def unpatchify(x, patch_size=8):
if len(x.shape) == 4:
bs, c, h, w = x.shape
x = einops.rearrange(x, "b (c p1 p2) h w -> b c (h p1) (w p2)", p1=patch_size, p2=patch_size)
elif len(x.shape) == 3:
c, h, w = x.shape
x = einops.rearrange(x, "(c p1 p2) h w -> c (h p1) (w p2)", p1=patch_size, p2=patch_size)
return x
def crop_each_layer(hidden_states, use_layers, list_layer_box, H, W, pos_embedding):
token_list = []
cos_list, sin_list = [], []
for layer_idx in range(hidden_states.shape[1]):
if list_layer_box[layer_idx] is None:
continue
else:
x1, y1, x2, y2 = list_layer_box[layer_idx]
x1, y1, x2, y2 = x1 // 8, y1 // 8, x2 // 8, y2 // 8
layer_token = hidden_states[:, layer_idx, y1:y2, x1:x2]
c, h, w = layer_token.shape
layer_token = layer_token.reshape(c, -1)
token_list.append(layer_token)
ids = prepare_latent_image_ids(-1, H * 2, W * 2, hidden_states.device, hidden_states.dtype)
ids[:, 0] = use_layers[layer_idx]
image_rotary_emb = pos_embedding(ids)
pos_cos, pos_sin = image_rotary_emb[0].reshape(H, W, -1), image_rotary_emb[1].reshape(H, W, -1)
cos_list.append(pos_cos[y1:y2, x1:x2].reshape(-1, 64))
sin_list.append(pos_sin[y1:y2, x1:x2].reshape(-1, 64))
token_list = torch.cat(token_list, dim=1).permute(1, 0)
cos_list = torch.cat(cos_list, dim=0)
sin_list = torch.cat(sin_list, dim=0)
return token_list, (cos_list, sin_list)
def prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
class AutoencoderKLTransformerTraining(ModelMixin, ConfigMixin, FromOriginalModelMixin):
def __init__(self):
super().__init__()
self.decoder_arch = 'vit'
self.layer_embedding = 'rope'
self.decoder = ViTEncoder()
self.pos_embedding = FluxPosEmbed(theta=10000, axes_dim=(8, 28, 28))
if 'rel' in self.layer_embedding or 'abs' in self.layer_embedding:
self.layer_embedding = nn.Parameter(torch.empty(16, 2 + self.max_layers, 1, 1).normal_(std=0.02), requires_grad=True)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def encode(self, z_2d, box, use_layers):
B, C, T, H, W = z_2d.shape
z, freqs_cis = [], []
for b in range(B):
_z = z_2d[b]
if 'vit' in self.decoder_arch:
_use_layers = torch.tensor(use_layers[b], device=z_2d.device)
if 'rel' in self.layer_embedding:
_use_layers[_use_layers > 2] = 2
if 'rel' in self.layer_embedding or 'abs' in self.layer_embedding:
_z = _z + self.layer_embedding[:, _use_layers] # + self.pos_embedding
if 'rope' not in self.layer_embedding:
use_layers[b] = [0] * len(use_layers[b])
_z, cis = crop_each_layer(_z, use_layers[b], box[b], H, W, self.pos_embedding) ### modified
z.append(_z)
freqs_cis.append(cis)
return z, freqs_cis
def decode(self, z, freqs_cis, box, H, W):
B = len(z)
pad = torch.zeros(4, H, W, device=z[0].device, dtype=z[0].dtype)
pad[3, :, :] = -1
x = []
for b in range(B):
_x = []
_z = self.decoder(z[b].unsqueeze(0), freqs_cis[b]).squeeze(0)
current_index = 0
for layer_idx in range(len(box[b])):
if box[b][layer_idx] == None:
_x.append(pad.clone())
else:
x1, y1, x2, y2 = box[b][layer_idx]
x1_tok, y1_tok, x2_tok, y2_tok = x1 // 8, y1 // 8, x2 // 8, y2 // 8
token_length = (x2_tok - x1_tok) * (y2_tok - y1_tok)
tokens = _z[current_index:current_index + token_length]
pixels = einops.rearrange(tokens, "(h w) c -> c h w", h=y2_tok - y1_tok, w=x2_tok - x1_tok)
unpatched = unpatchify(pixels)
pixels = pad.clone()
pixels[:, y1:y2, x1:x2] = unpatched
_x.append(pixels)
current_index += token_length
_x = torch.stack(_x, dim=1)
x.append(_x)
x = torch.stack(x, dim=0)
return x
def forward(self, z_2d, box, use_layers=None):
z_2d = z_2d.transpose(0, 1).unsqueeze(0)
use_layers = use_layers or [list(range(z_2d.shape[2]))]
z, freqs_cis = self.encode(z_2d, box, use_layers)
H, W = z_2d.shape[-2:]
x_hat = self.decode(z, freqs_cis, box, H * 8, W * 8)
assert x_hat.shape[0] == 1, x_hat.shape
x_hat = einops.rearrange(x_hat[0], "c t h w -> t c h w")
x_hat_rgb, x_hat_alpha = x_hat[:, :3], x_hat[:, 3:]
return x_hat_rgb, x_hat_alpha |