ART_v1.0 / custom_pipeline.py
WYBar's picture
finish with token
8fe62ee
raw
history blame
38.9 kB
import numpy as np
from typing import Any, Callable, Dict, List, Optional, Union
import torch
import torch.nn as nn
from diffusers.utils.torch_utils import randn_tensor
from diffusers.utils import is_torch_xla_available, logging
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, FluxPipeline
if is_torch_xla_available():
import torch_xla.core.xla_model as xm # type: ignore
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def _get_clip_prompt_embeds(
tokenizer,
text_encoder,
prompt: Union[str, List[str]],
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
):
device = device or text_encoder.device
dtype = text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=text_encoder.config.max_position_embeddings,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)
# Use pooled output of CLIPTextModel
prompt_embeds = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return prompt_embeds
def _get_t5_prompt_embeds(
tokenizer,
text_encoder,
prompt: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 512,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or text_encoder.device
dtype = dtype or text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)[0]
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
def encode_prompt(
tokenizers,
text_encoders,
prompt: Union[str, List[str]],
prompt_2: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 512,
):
tokenizer_1, tokenizer_2 = tokenizers
text_encoder_1, text_encoder_2 = text_encoders
device = text_encoder_1.device
dtype = text_encoder_1.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt_2 = prompt_2 or prompt
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
# We only use the pooled prompt output from the CLIPTextModel
pooled_prompt_embeds = _get_clip_prompt_embeds(
tokenizer=tokenizer_1,
text_encoder=text_encoder_1,
prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
)
prompt_embeds = _get_t5_prompt_embeds(
tokenizer=tokenizer_2,
text_encoder=text_encoder_2,
prompt=prompt_2,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
return prompt_embeds, pooled_prompt_embeds, text_ids
class CustomFluxPipeline(FluxPipeline):
@staticmethod
def _prepare_latent_image_ids(height, width, list_layer_box, device, dtype):
latent_image_ids_list = []
for layer_idx in range(len(list_layer_box)):
if list_layer_box[layer_idx] == None:
continue
else:
latent_image_ids = torch.zeros(height // 2, width // 2, 3) # [h/2, w/2, 3]
latent_image_ids[..., 0] = layer_idx # use the first dimension for layer representation
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
x1, y1, x2, y2 = list_layer_box[layer_idx]
x1, y1, x2, y2 = x1 // 16, y1 // 16, x2 // 16, y2 // 16
latent_image_ids = latent_image_ids[y1:y2, x1:x2, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
latent_image_ids_list.append(latent_image_ids)
full_latent_image_ids = torch.cat(latent_image_ids_list, dim=0)
return full_latent_image_ids.to(device=device, dtype=dtype)
def prepare_latents(
self,
batch_size,
num_layers,
num_channels_latents,
height,
width,
list_layer_box,
dtype,
device,
generator,
latents=None,
):
height = 2 * (int(height) // self.vae_scale_factor)
width = 2 * (int(width) // self.vae_scale_factor)
shape = (batch_size, num_layers, num_channels_latents, height, width)
if latents is not None:
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # [bs, f, c_latent, h, w]
latent_image_ids = self._prepare_latent_image_ids(height, width, list_layer_box, device, dtype)
return latents, latent_image_ids
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
validation_box: List[tuple] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
num_layers: int = 5,
sdxl_vae: nn.Module = None,
transparent_decoder: nn.Module = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_layers,
num_channels_latents,
height,
width,
validation_box,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latent_image_ids.shape[0] # ???
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
list_layer_box=validation_box,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
# create a grey latent
bs, n_frames, channel_latent, height, width = latents.shape
pixel_grey = torch.zeros(size=(bs*n_frames, 3, height*8, width*8), device=latents.device, dtype=latents.dtype)
latent_grey = self.vae.encode(pixel_grey).latent_dist.sample()
latent_grey = (latent_grey - self.vae.config.shift_factor) * self.vae.config.scaling_factor
latent_grey = latent_grey.view(bs, n_frames, channel_latent, height, width) # [bs, f, c_latent, h, w]
# fill in the latents
for layer_idx in range(latent_grey.shape[1]):
x1, y1, x2, y2 = validation_box[layer_idx]
x1, y1, x2, y2 = x1 // 8, y1 // 8, x2 // 8, y2 // 8
latent_grey[:, layer_idx, :, y1:y2, x1:x2] = latents[:, layer_idx, :, y1:y2, x1:x2]
latents = latent_grey
if output_type == "latent":
image = latents
else:
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
latents = latents.reshape(bs * n_frames, channel_latent, height, width)
image = self.vae.decode(latents, return_dict=False)[0]
if sdxl_vae is not None:
sdxl_vae = sdxl_vae.to(dtype=image.dtype, device=image.device)
sdxl_latents = sdxl_vae.encode(image).latent_dist.sample()
transparent_decoder = transparent_decoder.to(dtype=image.dtype, device=image.device)
result_list, vis_list = transparent_decoder(sdxl_vae, sdxl_latents)
else:
result_list, vis_list = None, None
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, result_list, vis_list)
return FluxPipelineOutput(images=image), result_list, vis_list
class CustomFluxPipelineCfg(FluxPipeline):
@staticmethod
def _prepare_latent_image_ids(height, width, list_layer_box, device, dtype):
latent_image_ids_list = []
for layer_idx in range(len(list_layer_box)):
if list_layer_box[layer_idx] == None:
continue
else:
latent_image_ids = torch.zeros(height // 2, width // 2, 3) # [h/2, w/2, 3]
latent_image_ids[..., 0] = layer_idx # use the first dimension for layer representation
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
x1, y1, x2, y2 = list_layer_box[layer_idx]
x1, y1, x2, y2 = x1 // 16, y1 // 16, x2 // 16, y2 // 16
latent_image_ids = latent_image_ids[y1:y2, x1:x2, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
latent_image_ids_list.append(latent_image_ids)
full_latent_image_ids = torch.cat(latent_image_ids_list, dim=0)
return full_latent_image_ids.to(device=device, dtype=dtype)
def prepare_latents(
self,
batch_size,
num_layers,
num_channels_latents,
height,
width,
list_layer_box,
dtype,
device,
generator,
latents=None,
):
height = 2 * (int(height) // self.vae_scale_factor)
width = 2 * (int(width) // self.vae_scale_factor)
shape = (batch_size, num_layers, num_channels_latents, height, width)
if latents is not None:
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # [bs, n_layers, c_latent, h, w]
latent_image_ids = self._prepare_latent_image_ids(height, width, list_layer_box, device, dtype)
return latents, latent_image_ids
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
validation_box: List[tuple] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
true_gs: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
num_layers: int = 5,
transparent_decoder: nn.Module = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
(
neg_prompt_embeds,
neg_pooled_prompt_embeds,
neg_text_ids,
) = self.encode_prompt(
prompt="",
prompt_2=None,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_layers,
num_channels_latents,
height,
width,
validation_box,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latent_image_ids.shape[0]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
list_layer_box=validation_box,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
neg_noise_pred = self.transformer(
hidden_states=latents,
list_layer_box=validation_box,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=neg_pooled_prompt_embeds,
encoder_hidden_states=neg_prompt_embeds,
txt_ids=neg_text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
noise_pred = neg_noise_pred + true_gs * (noise_pred - neg_noise_pred)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
# create a grey latent
bs, n_layers, channel_latent, height, width = latents.shape
pixel_grey = torch.zeros(size=(bs*n_layers, 3, height*8, width*8), device=latents.device, dtype=latents.dtype)
latent_grey = self.vae.encode(pixel_grey).latent_dist.sample()
latent_grey = (latent_grey - self.vae.config.shift_factor) * self.vae.config.scaling_factor
latent_grey = latent_grey.view(bs, n_layers, channel_latent, height, width) # [bs, n_layers, c_latent, h, w]
# fill in the latents
for layer_idx in range(latent_grey.shape[1]):
if validation_box[layer_idx] == None:
continue
x1, y1, x2, y2 = validation_box[layer_idx]
x1, y1, x2, y2 = x1 // 8, y1 // 8, x2 // 8, y2 // 8
latent_grey[:, layer_idx, :, y1:y2, x1:x2] = latents[:, layer_idx, :, y1:y2, x1:x2]
latents = latent_grey
if output_type == "latent":
image = latents
else:
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
latents = latents.reshape(bs * n_layers, channel_latent, height, width)
latents_segs = torch.split(latents, 16, dim=0) ### split latents by 16 to avoid odd purple output
image_segs = [self.vae.decode(latents_seg, return_dict=False)[0] for latents_seg in latents_segs]
image = torch.cat(image_segs, dim=0)
if transparent_decoder is not None:
transparent_decoder = transparent_decoder.to(dtype=image.dtype, device=image.device)
decoded_fg, decoded_alpha = transparent_decoder(latents, [validation_box])
decoded_alpha = (decoded_alpha + 1.0) / 2.0
decoded_alpha = torch.clamp(decoded_alpha, min=0.0, max=1.0).permute(0, 2, 3, 1)
decoded_fg = (decoded_fg + 1.0) / 2.0
decoded_fg = torch.clamp(decoded_fg, min=0.0, max=1.0).permute(0, 2, 3, 1)
vis_list = None
png = torch.cat([decoded_fg, decoded_alpha], dim=3)
result_list = (png * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
else:
result_list, vis_list = None, None
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, result_list, vis_list, latents)
return FluxPipelineOutput(images=image), result_list, vis_list, latents