WYBar commited on
Commit
368bfd7
·
1 Parent(s): fcb494b

cpu or cuda

Browse files
Files changed (1) hide show
  1. app.py +23 -16
app.py CHANGED
@@ -230,6 +230,9 @@ def calculate_iou(box1, box2):
230
 
231
  # @spaces.GPU(enable_queue=True, duration=120)
232
  def buildmodel(**kwargs):
 
 
 
233
  from modeling_crello import CrelloModel, CrelloModelConfig
234
  from quantizer import get_quantizer
235
  # seed / input model / resume
@@ -289,7 +292,6 @@ def buildmodel(**kwargs):
289
  config=model_args,
290
  # cache_dir="/openseg_blob/v-yanbin/GradioDemo/cache_dir",
291
  ).to("cuda")
292
- # model = CrelloModel(config=model_args)
293
 
294
  tokenizer.add_special_tokens({"mask_token": "<mask>"})
295
  quantizer.additional_special_tokens.add("<mask>")
@@ -298,7 +300,7 @@ def buildmodel(**kwargs):
298
  for token in added_special_tokens_list:
299
  quantizer.additional_special_tokens.add(token)
300
 
301
- return model, quantizer, tokenizer
302
 
303
  def construction_layout():
304
  params_dict = {
@@ -318,7 +320,8 @@ def construction_layout():
318
  }
319
  device = "cuda"
320
  # Init model
321
- model, quantizer, tokenizer = buildmodel(**params_dict)
 
322
 
323
  # print('resize token embeddings to match the tokenizer', 129423)
324
  # model.lm.resize_token_embeddings(129423)
@@ -332,20 +335,24 @@ def construction_layout():
332
  model.eval()
333
  # quantizer = quantizer.to("cuda")
334
  # tokenizer = tokenizer.to("cuda")
335
- model.lm = model.lm.to("cuda")
336
  print(model.lm.device)
337
- return model, quantizer, tokenizer, params_dict["width"], params_dict["height"], device
 
 
338
 
339
  @torch.no_grad()
340
  @spaces.GPU(duration=120)
341
  def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
 
342
  json_example = inputs
343
  input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
344
  print("tokenizer1")
345
  inputs = tokenizer(
346
  input_intension, return_tensors="pt"
347
  ).to(model.lm.device)
348
- # print(inputs.device)
 
349
  print("tokenizer2")
350
 
351
  stopping_criteria = StoppingCriteriaList()
@@ -379,12 +386,6 @@ def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_s
379
  return pred_json_example
380
 
381
  def inference(generate_method, intention, model, quantizer, tokenizer, width, height, device, do_sample=True, temperature=1.0, top_p=1.0, top_k=50):
382
- # def FormulateInput(intension: str):
383
- # resdict = {}
384
- # resdict["wholecaption"] = intension
385
- # resdict["layout"] = []
386
- # return resdict
387
- # rawdata = FormulateInput(intention)
388
  rawdata = {}
389
  rawdata["wholecaption"] = intention
390
  rawdata["layout"] = []
@@ -525,7 +526,8 @@ def process_svg(text_input, tuple_input, seed, true_gs, inference_steps):
525
  return result_images, svg_file_path, svg_editor
526
 
527
  def main():
528
- model, quantizer, tokenizer, width, height, device = construction_layout()
 
529
 
530
  inference_partial = partial(
531
  inference,
@@ -540,12 +542,17 @@ def main():
540
  def process_preddate(intention, temperature, top_p, generate_method='v1'):
541
  intention = intention.replace('\n', '').replace('\r', '').replace('\\', '')
542
  intention = ensure_space_after_period(intention)
 
 
 
543
  if temperature == 0.0:
544
  # print("looking for greedy decoding strategies, set `do_sample=False`.")
545
- preddata = inference_partial(generate_method, intention, do_sample=False)
 
546
  else:
547
- preddata = inference_partial(generate_method, intention, temperature=temperature, top_p=top_p)
548
- # wholecaption = preddata["wholecaption"]
 
549
  layouts = preddata["layout"]
550
  list_box = []
551
  for i, layout in enumerate(layouts):
 
230
 
231
  # @spaces.GPU(enable_queue=True, duration=120)
232
  def buildmodel(**kwargs):
233
+ global model
234
+ global quantizer
235
+ global tokenizer
236
  from modeling_crello import CrelloModel, CrelloModelConfig
237
  from quantizer import get_quantizer
238
  # seed / input model / resume
 
292
  config=model_args,
293
  # cache_dir="/openseg_blob/v-yanbin/GradioDemo/cache_dir",
294
  ).to("cuda")
 
295
 
296
  tokenizer.add_special_tokens({"mask_token": "<mask>"})
297
  quantizer.additional_special_tokens.add("<mask>")
 
300
  for token in added_special_tokens_list:
301
  quantizer.additional_special_tokens.add(token)
302
 
303
+ # return model, quantizer, tokenizer
304
 
305
  def construction_layout():
306
  params_dict = {
 
320
  }
321
  device = "cuda"
322
  # Init model
323
+ buildmodel(**params_dict)
324
+ # model, quantizer, tokenizer = buildmodel(**params_dict)
325
 
326
  # print('resize token embeddings to match the tokenizer', 129423)
327
  # model.lm.resize_token_embeddings(129423)
 
335
  model.eval()
336
  # quantizer = quantizer.to("cuda")
337
  # tokenizer = tokenizer.to("cuda")
338
+ # model.lm = model.lm.to("cuda")
339
  print(model.lm.device)
340
+
341
+ return params_dict["width"], params_dict["height"], device
342
+ # return model, quantizer, tokenizer, params_dict["width"], params_dict["height"], device
343
 
344
  @torch.no_grad()
345
  @spaces.GPU(duration=120)
346
  def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
347
+ print(model.lm.device)
348
  json_example = inputs
349
  input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
350
  print("tokenizer1")
351
  inputs = tokenizer(
352
  input_intension, return_tensors="pt"
353
  ).to(model.lm.device)
354
+ print("Input IDs device:", inputs["input_ids"].device)
355
+ print("Attention Mask device:", inputs["attention_mask"].device)
356
  print("tokenizer2")
357
 
358
  stopping_criteria = StoppingCriteriaList()
 
386
  return pred_json_example
387
 
388
  def inference(generate_method, intention, model, quantizer, tokenizer, width, height, device, do_sample=True, temperature=1.0, top_p=1.0, top_k=50):
 
 
 
 
 
 
389
  rawdata = {}
390
  rawdata["wholecaption"] = intention
391
  rawdata["layout"] = []
 
526
  return result_images, svg_file_path, svg_editor
527
 
528
  def main():
529
+ # model, quantizer, tokenizer, width, height, device = construction_layout()
530
+ width, height, device = construction_layout()
531
 
532
  inference_partial = partial(
533
  inference,
 
542
  def process_preddate(intention, temperature, top_p, generate_method='v1'):
543
  intention = intention.replace('\n', '').replace('\r', '').replace('\\', '')
544
  intention = ensure_space_after_period(intention)
545
+ print(f"process_preddate: {model.lm.device}")
546
+ model.lm.to("cuda")
547
+ print(f"after process_preddate: {model.lm.device}")
548
  if temperature == 0.0:
549
  # print("looking for greedy decoding strategies, set `do_sample=False`.")
550
+ # preddata = inference_partial(generate_method, intention, do_sample=False)
551
+ preddata = inference(generate_method, intention, model=model, quantizer=quantizer, tokenizer=tokenizer, width=width, height=height, device=device, do_sample=False)
552
  else:
553
+ # preddata = inference_partial(generate_method, intention, temperature=temperature, top_p=top_p)
554
+ preddata = inference(generate_method, intention, model=model, quantizer=quantizer, tokenizer=tokenizer, width=width, height=height, device=device, temperature=temperature, top_p=top_p)
555
+
556
  layouts = preddata["layout"]
557
  list_box = []
558
  for i, layout in enumerate(layouts):