app.py
CHANGED
@@ -365,6 +365,7 @@ def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, do_sample=Fa
|
|
365 |
print(f"evaluate_v1 {model.device} {model.lm.device} {pipeline.device}")
|
366 |
model = model.to("cuda")
|
367 |
print(f"after evaluate_v1 {model.device} {model.lm.device} {pipeline.device}")
|
|
|
368 |
json_example = inputs
|
369 |
input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
|
370 |
|
@@ -471,7 +472,7 @@ def process_preddate(intention, temperature, top_p, generate_method='v1'):
|
|
471 |
|
472 |
@spaces.GPU(duration=120)
|
473 |
def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae):
|
474 |
-
print(validation_box)
|
475 |
output, rgba_output, _, _ = pipeline(
|
476 |
prompt=validation_prompt,
|
477 |
validation_box=validation_box,
|
@@ -500,7 +501,8 @@ def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps,
|
|
500 |
return output_gradio
|
501 |
|
502 |
def gradio_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, inference_steps, pipeline, transp_vae):
|
503 |
-
print(f"svg_test_one_sample
|
|
|
504 |
# generator = torch.Generator().manual_seed(seed)
|
505 |
generator = torch.Generator(device=torch.device("cuda", index=0)).manual_seed(seed)
|
506 |
try:
|
@@ -538,7 +540,8 @@ def gradio_test_one_sample(validation_prompt, validation_box_str, seed, true_gs,
|
|
538 |
return result_images, svg_file_path
|
539 |
|
540 |
def process_svg(text_input, tuple_input, seed, true_gs, inference_steps):
|
541 |
-
print(f"precess_svg
|
|
|
542 |
result_images = []
|
543 |
result_images, svg_file_path = gradio_test_one_sample(text_input, tuple_input, seed, true_gs, inference_steps, pipeline=pipeline, transp_vae=transp_vae)
|
544 |
# result_images, svg_file_path = gradio_test_one_sample_partial(text_input, tuple_input, seed, true_gs, inference_steps)
|
|
|
365 |
print(f"evaluate_v1 {model.device} {model.lm.device} {pipeline.device}")
|
366 |
model = model.to("cuda")
|
367 |
print(f"after evaluate_v1 {model.device} {model.lm.device} {pipeline.device}")
|
368 |
+
|
369 |
json_example = inputs
|
370 |
input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
|
371 |
|
|
|
472 |
|
473 |
@spaces.GPU(duration=120)
|
474 |
def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae):
|
475 |
+
print(f"test_one_sample: {validation_box}")
|
476 |
output, rgba_output, _, _ = pipeline(
|
477 |
prompt=validation_prompt,
|
478 |
validation_box=validation_box,
|
|
|
501 |
return output_gradio
|
502 |
|
503 |
def gradio_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, inference_steps, pipeline, transp_vae):
|
504 |
+
print(f"svg_test_one_sample")
|
505 |
+
# print(f"svg_test_one_sample {model.device} {model.lm.device} {pipeline.device}")
|
506 |
# generator = torch.Generator().manual_seed(seed)
|
507 |
generator = torch.Generator(device=torch.device("cuda", index=0)).manual_seed(seed)
|
508 |
try:
|
|
|
540 |
return result_images, svg_file_path
|
541 |
|
542 |
def process_svg(text_input, tuple_input, seed, true_gs, inference_steps):
|
543 |
+
print(f"precess_svg")
|
544 |
+
# print(f"precess_svg {model.device} {model.lm.device} {pipeline.device}")
|
545 |
result_images = []
|
546 |
result_images, svg_file_path = gradio_test_one_sample(text_input, tuple_input, seed, true_gs, inference_steps, pipeline=pipeline, transp_vae=transp_vae)
|
547 |
# result_images, svg_file_path = gradio_test_one_sample_partial(text_input, tuple_input, seed, true_gs, inference_steps)
|