reset to resize
Browse files- app.py +7 -6
- app_test.py +5 -5
- modeling_crello.py +4 -3
app.py
CHANGED
@@ -283,6 +283,7 @@ def buildmodel(**kwargs):
|
|
283 |
# resume,
|
284 |
# config=model_args
|
285 |
# ).to(device)
|
|
|
286 |
model = CrelloModel.from_pretrained(
|
287 |
"WYBar/LLM_For_Layout_Planning",
|
288 |
subfolder="checkpoint-26000", # 加载检查点目录
|
@@ -303,8 +304,8 @@ def buildmodel(**kwargs):
|
|
303 |
def construction_layout():
|
304 |
params_dict = {
|
305 |
# 需要修改
|
306 |
-
"input_model": "
|
307 |
-
"resume": "
|
308 |
|
309 |
"seed": 0,
|
310 |
"mask_values": False,
|
@@ -320,10 +321,10 @@ def construction_layout():
|
|
320 |
# Init model
|
321 |
model, quantizer, tokenizer = buildmodel(**params_dict)
|
322 |
|
323 |
-
print('resize token embeddings to match the tokenizer', 129423)
|
324 |
-
model.lm.resize_token_embeddings(129423)
|
325 |
-
model.input_embeddings = model.lm.get_input_embeddings()
|
326 |
-
print('after token embeddings to match the tokenizer', 129423)
|
327 |
|
328 |
print("before .to(device)")
|
329 |
model = model.to(device)
|
|
|
283 |
# resume,
|
284 |
# config=model_args
|
285 |
# ).to(device)
|
286 |
+
|
287 |
model = CrelloModel.from_pretrained(
|
288 |
"WYBar/LLM_For_Layout_Planning",
|
289 |
subfolder="checkpoint-26000", # 加载检查点目录
|
|
|
304 |
def construction_layout():
|
305 |
params_dict = {
|
306 |
# 需要修改
|
307 |
+
"input_model": "/openseg_blob/v-sirui/temporary/2024-02-21/Layout_train/COLEv2/Design_LLM/checkpoint/Meta-Llama-3-8B",
|
308 |
+
"resume": "/openseg_blob/v-sirui/temporary/2024-02-21/SVD/Int2lay_1016/checkpoint/int2lay_1031/1031_test/checkpoint-26000/",
|
309 |
|
310 |
"seed": 0,
|
311 |
"mask_values": False,
|
|
|
321 |
# Init model
|
322 |
model, quantizer, tokenizer = buildmodel(**params_dict)
|
323 |
|
324 |
+
# print('resize token embeddings to match the tokenizer', 129423)
|
325 |
+
# model.lm.resize_token_embeddings(129423)
|
326 |
+
# model.input_embeddings = model.lm.get_input_embeddings()
|
327 |
+
# print('after token embeddings to match the tokenizer', 129423)
|
328 |
|
329 |
print("before .to(device)")
|
330 |
model = model.to(device)
|
app_test.py
CHANGED
@@ -283,7 +283,7 @@ def buildmodel(**kwargs):
|
|
283 |
# resume,
|
284 |
# config=model_args
|
285 |
# ).to(device)
|
286 |
-
|
287 |
model = CrelloModel.from_pretrained(
|
288 |
"WYBar/LLM_For_Layout_Planning",
|
289 |
subfolder="checkpoint-26000", # 加载检查点目录
|
@@ -321,10 +321,10 @@ def construction_layout():
|
|
321 |
# Init model
|
322 |
model, quantizer, tokenizer = buildmodel(**params_dict)
|
323 |
|
324 |
-
print('resize token embeddings to match the tokenizer', 129423)
|
325 |
-
model.lm.resize_token_embeddings(129423)
|
326 |
-
model.input_embeddings = model.lm.get_input_embeddings()
|
327 |
-
print('after token embeddings to match the tokenizer', 129423)
|
328 |
|
329 |
print("before .to(device)")
|
330 |
model = model.to(device)
|
|
|
283 |
# resume,
|
284 |
# config=model_args
|
285 |
# ).to(device)
|
286 |
+
|
287 |
model = CrelloModel.from_pretrained(
|
288 |
"WYBar/LLM_For_Layout_Planning",
|
289 |
subfolder="checkpoint-26000", # 加载检查点目录
|
|
|
321 |
# Init model
|
322 |
model, quantizer, tokenizer = buildmodel(**params_dict)
|
323 |
|
324 |
+
# print('resize token embeddings to match the tokenizer', 129423)
|
325 |
+
# model.lm.resize_token_embeddings(129423)
|
326 |
+
# model.input_embeddings = model.lm.get_input_embeddings()
|
327 |
+
# print('after token embeddings to match the tokenizer', 129423)
|
328 |
|
329 |
print("before .to(device)")
|
330 |
model = model.to(device)
|
modeling_crello.py
CHANGED
@@ -181,9 +181,10 @@ class CrelloModel(PreTrainedModel):
|
|
181 |
self.lm.train()
|
182 |
self.lm.config.gradient_checkpointing = True
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
187 |
|
188 |
def train(self, mode=True):
|
189 |
super().train(mode=mode)
|
|
|
181 |
self.lm.train()
|
182 |
self.lm.config.gradient_checkpointing = True
|
183 |
|
184 |
+
print('resize token embeddings to match the tokenizer', config.vocab_size)
|
185 |
+
self.lm.resize_token_embeddings(config.vocab_size)
|
186 |
+
self.input_embeddings = self.lm.get_input_embeddings()
|
187 |
+
print('after token embeddings to match the tokenizer', config.vocab_size)
|
188 |
|
189 |
def train(self, mode=True):
|
190 |
super().train(mode=mode)
|