Spaces:
Running
Running
import gradio as gr | |
from ocr_tamil.ocr import OCR | |
import torch | |
ocr_detect = OCR(detect=True,enable_cuda=False) | |
ocr_recognize = OCR(detect=False,enable_cuda=False) | |
def predict(image_path,mode): | |
if mode == "recognize": | |
texts = ocr_recognize.predict(image_path) | |
else: | |
texts = ocr_detect.predict(image_path) | |
texts = [" ".join(texts[0])] | |
texts = texts[0] | |
return texts | |
image_examples = ["11.jpg","4.jpg","0.jpg","tamil_handwritten.jpg","1.jpg","2.jpg","3.jpg","5.jpg", | |
"6.jpg","7.jpg","10.jpg","14.jpg"] | |
mode_examples = ["recognize","recognize","detect","detect","recognize","recognize","recognize" | |
,"recognize","recognize","recognize","recognize"] | |
input_1 = gr.Image(type="numpy") | |
input_2 = gr.Radio(["recognize", "detect"], label="mode", | |
info="Only Text recognition or need both Text detection + recognition") | |
examples = [[i,j] for i,j in zip(image_examples,mode_examples)] | |
gr.Interface( | |
predict, | |
inputs=[input_1,input_2], | |
outputs=gr.Textbox(label="Extracted Text",interactive=False, | |
show_copy_button=True), | |
title="OCR TAMIL", | |
examples=examples | |
).launch() | |