Go-Raw commited on
Commit
68f4347
·
verified ·
1 Parent(s): 38f5808

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  from sentence_transformers import SentenceTransformer, util
2
  from huggingface_hub import hf_hub_download
3
  import pickle
@@ -9,18 +10,18 @@ import gradio as gr
9
 
10
  pd.options.mode.chained_assignment = None
11
 
12
- # Load precomputed embeddings from your dataset repo
13
  embeddings = pickle.load(open(
14
  hf_hub_download("Go-Raw/semantic-memes", repo_type="dataset", filename="meme-embeddings.pkl"), "rb"))
15
 
16
- # Load meme metadata from your dataset repo
17
  df = pd.read_csv(
18
  hf_hub_download("Go-Raw/semantic-memes", repo_type="dataset", filename="semantic_memes.csv"))
19
 
20
- # Load model
21
  model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
22
 
23
- # Meme search function
24
  def generate_memes(prompt):
25
  prompt_embedding = model.encode(prompt, convert_to_tensor=True)
26
  hits = util.semantic_search(prompt_embedding, embeddings, top_k=6)
@@ -38,7 +39,7 @@ def generate_memes(prompt):
38
  print(f"Error loading image {url}: {e}")
39
  return images
40
 
41
- # Gradio UI
42
  input_textbox = gr.Textbox(lines=1, label="Type your vibe here 🧠")
43
  output_gallery = gr.Gallery(label="Your Meme Results", columns=3, rows=2, height="auto")
44
 
@@ -54,7 +55,7 @@ examples = [
54
  "This meeting could’ve been an email"
55
  ]
56
 
57
- # Launch app
58
  iface = gr.Interface(
59
  fn=generate_memes,
60
  inputs=input_textbox,
 
1
+ # apne imp libraries
2
  from sentence_transformers import SentenceTransformer, util
3
  from huggingface_hub import hf_hub_download
4
  import pickle
 
10
 
11
  pd.options.mode.chained_assignment = None
12
 
13
+ # embeddings load kiye dataset repo se
14
  embeddings = pickle.load(open(
15
  hf_hub_download("Go-Raw/semantic-memes", repo_type="dataset", filename="meme-embeddings.pkl"), "rb"))
16
 
17
+ # apne meme ka metadata load kiya
18
  df = pd.read_csv(
19
  hf_hub_download("Go-Raw/semantic-memes", repo_type="dataset", filename="semantic_memes.csv"))
20
 
21
+ # ye apna model hai
22
  model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
23
 
24
+ # iss func se meme search hota hai
25
  def generate_memes(prompt):
26
  prompt_embedding = model.encode(prompt, convert_to_tensor=True)
27
  hits = util.semantic_search(prompt_embedding, embeddings, top_k=6)
 
39
  print(f"Error loading image {url}: {e}")
40
  return images
41
 
42
+ # Gradio ka UI
43
  input_textbox = gr.Textbox(lines=1, label="Type your vibe here 🧠")
44
  output_gallery = gr.Gallery(label="Your Meme Results", columns=3, rows=2, height="auto")
45
 
 
55
  "This meeting could’ve been an email"
56
  ]
57
 
58
+ # app launch karne ke liye
59
  iface = gr.Interface(
60
  fn=generate_memes,
61
  inputs=input_textbox,