Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from sentence_transformers import SentenceTransformer, util
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
import pickle
|
@@ -9,18 +10,18 @@ import gradio as gr
|
|
9 |
|
10 |
pd.options.mode.chained_assignment = None
|
11 |
|
12 |
-
#
|
13 |
embeddings = pickle.load(open(
|
14 |
hf_hub_download("Go-Raw/semantic-memes", repo_type="dataset", filename="meme-embeddings.pkl"), "rb"))
|
15 |
|
16 |
-
#
|
17 |
df = pd.read_csv(
|
18 |
hf_hub_download("Go-Raw/semantic-memes", repo_type="dataset", filename="semantic_memes.csv"))
|
19 |
|
20 |
-
#
|
21 |
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
22 |
|
23 |
-
#
|
24 |
def generate_memes(prompt):
|
25 |
prompt_embedding = model.encode(prompt, convert_to_tensor=True)
|
26 |
hits = util.semantic_search(prompt_embedding, embeddings, top_k=6)
|
@@ -38,7 +39,7 @@ def generate_memes(prompt):
|
|
38 |
print(f"Error loading image {url}: {e}")
|
39 |
return images
|
40 |
|
41 |
-
# Gradio UI
|
42 |
input_textbox = gr.Textbox(lines=1, label="Type your vibe here 🧠")
|
43 |
output_gallery = gr.Gallery(label="Your Meme Results", columns=3, rows=2, height="auto")
|
44 |
|
@@ -54,7 +55,7 @@ examples = [
|
|
54 |
"This meeting could’ve been an email"
|
55 |
]
|
56 |
|
57 |
-
#
|
58 |
iface = gr.Interface(
|
59 |
fn=generate_memes,
|
60 |
inputs=input_textbox,
|
|
|
1 |
+
# apne imp libraries
|
2 |
from sentence_transformers import SentenceTransformer, util
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
import pickle
|
|
|
10 |
|
11 |
pd.options.mode.chained_assignment = None
|
12 |
|
13 |
+
# embeddings load kiye dataset repo se
|
14 |
embeddings = pickle.load(open(
|
15 |
hf_hub_download("Go-Raw/semantic-memes", repo_type="dataset", filename="meme-embeddings.pkl"), "rb"))
|
16 |
|
17 |
+
# apne meme ka metadata load kiya
|
18 |
df = pd.read_csv(
|
19 |
hf_hub_download("Go-Raw/semantic-memes", repo_type="dataset", filename="semantic_memes.csv"))
|
20 |
|
21 |
+
# ye apna model hai
|
22 |
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
23 |
|
24 |
+
# iss func se meme search hota hai
|
25 |
def generate_memes(prompt):
|
26 |
prompt_embedding = model.encode(prompt, convert_to_tensor=True)
|
27 |
hits = util.semantic_search(prompt_embedding, embeddings, top_k=6)
|
|
|
39 |
print(f"Error loading image {url}: {e}")
|
40 |
return images
|
41 |
|
42 |
+
# Gradio ka UI
|
43 |
input_textbox = gr.Textbox(lines=1, label="Type your vibe here 🧠")
|
44 |
output_gallery = gr.Gallery(label="Your Meme Results", columns=3, rows=2, height="auto")
|
45 |
|
|
|
55 |
"This meeting could’ve been an email"
|
56 |
]
|
57 |
|
58 |
+
# app launch karne ke liye
|
59 |
iface = gr.Interface(
|
60 |
fn=generate_memes,
|
61 |
inputs=input_textbox,
|