Go-Raw commited on
Commit
70e3b26
·
verified ·
1 Parent(s): 6197d6a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -11
app.py CHANGED
@@ -9,12 +9,13 @@ import gradio as gr
9
 
10
  pd.options.mode.chained_assignment = None
11
 
12
- # Load precomputed embeddings
13
  embeddings = pickle.load(open(
14
- hf_hub_download("bhavyagiri/semantic-memes", repo_type="dataset", filename="meme-embeddings.pkl"), "rb"))
15
 
16
- # Load meme metadata
17
- df = pd.read_csv(hf_hub_download("bhavyagiri/semantic-memes", repo_type="dataset", filename="input.csv"))
 
18
 
19
  # Load model
20
  model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
@@ -37,15 +38,15 @@ def generate_memes(prompt):
37
  print(f"Error loading image {url}: {e}")
38
  return images
39
 
40
- # UI components
41
- input_textbox = gr.Textbox(lines=1, label="Search something cool")
42
- output_gallery = gr.Gallery(label="Retrieved Memes", columns=3, rows=2, height="auto")
43
 
44
- title = "Semantic Search for Memes"
45
- description = "Search memes from a dataset of ~6k memes using semantic similarity. [GitHub Repo](https://github.com/bhavya-giri/retrieving-memes)"
46
- examples = ["Get Shreked", "Going Crazy", "Spiderman is my teacher"]
47
 
48
- # Interface
49
  iface = gr.Interface(
50
  fn=generate_memes,
51
  inputs=input_textbox,
 
9
 
10
  pd.options.mode.chained_assignment = None
11
 
12
+ # Load precomputed embeddings from your dataset repo
13
  embeddings = pickle.load(open(
14
+ hf_hub_download("Go-Raw/semantic-memes", repo_type="dataset", filename="meme-embeddings.pkl"), "rb"))
15
 
16
+ # Load meme metadata from your dataset repo
17
+ df = pd.read_csv(
18
+ hf_hub_download("Go-Raw/semantic-memes", repo_type="dataset", filename="semantic_memes.csv"))
19
 
20
  # Load model
21
  model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
 
38
  print(f"Error loading image {url}: {e}")
39
  return images
40
 
41
+ # Gradio UI
42
+ input_textbox = gr.Textbox(lines=1, label="Type your vibe here 🧠")
43
+ output_gallery = gr.Gallery(label="Your Meme Results", columns=3, rows=2, height="auto")
44
 
45
+ title = "🧠 Meme Lord"
46
+ description = "Search Indian memes from a custom dataset using semantic similarity. Built using Sentence Transformers & Hugging Face. [Dataset](https://huggingface.co/datasets/Go-Raw/semantic-memes)"
47
+ examples = ["When the professor says 'open book exam'", "Shaktimaan saves the day", "Tu janta nahi mera baap kaun hai"]
48
 
49
+ # Launch app
50
  iface = gr.Interface(
51
  fn=generate_memes,
52
  inputs=input_textbox,