Spaces:
Sleeping
Sleeping
Added sorting by price, relevancy, rating
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ from transformers import BertTokenizer, BertModel
|
|
9 |
from collections import defaultdict, Counter
|
10 |
from tqdm.auto import tqdm
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
12 |
|
13 |
#Loading the model
|
14 |
@st.cache_resource
|
@@ -31,13 +32,26 @@ def load_data():
|
|
31 |
vectors_df = pd.read_csv('restaurants_dataframe_with_embeddings.csv')
|
32 |
embeds = dict(enumerate(vectors_df['Embeddings']))
|
33 |
rest_names = list(vectors_df['Names'])
|
|
|
34 |
return embeds, rest_names, vectors_df
|
35 |
|
36 |
#type: dict; keys: 0-n
|
37 |
-
restaurants_embeds, rest_names,
|
38 |
|
39 |
model, tokenizer = get_models()
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
#a function that takes a sentence and converts it into embeddings
|
42 |
def get_bert_embeddings(sentence, model, tokenizer):
|
43 |
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True)
|
@@ -47,19 +61,70 @@ def get_bert_embeddings(sentence, model, tokenizer):
|
|
47 |
return embeddings
|
48 |
|
49 |
# a function that return top-K best restaurants
|
50 |
-
def
|
51 |
embedded_query = get_bert_embeddings(query, model, tokenizer)
|
52 |
embedded_query = embedded_query.numpy()
|
53 |
-
|
54 |
-
top_similar = dict()
|
55 |
for i in range(len(restaurants_embeds)):
|
56 |
name = rest_names[i]
|
57 |
-
top_similar
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
63 |
return result
|
64 |
|
65 |
#combines 2 users preferences into 1 string and fetches best options
|
@@ -67,14 +132,69 @@ def get_combined_preferences(user1, user2):
|
|
67 |
#TODO: optimize for more users
|
68 |
shared_pref = ''
|
69 |
for pref in user1:
|
70 |
-
shared_pref += pref
|
71 |
shared_pref += " "
|
72 |
shared_pref += " "
|
73 |
for pref in user2:
|
74 |
-
shared_pref += pref
|
75 |
shared_pref += " "
|
76 |
-
return shared_pref
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
if 'preferences_1' not in st.session_state:
|
79 |
st.session_state.preferences_1 = []
|
80 |
|
@@ -87,81 +207,152 @@ if 'food' not in st.session_state:
|
|
87 |
if 'ambiance' not in st.session_state:
|
88 |
st.session_state.ambiance = ['Romantic date', 'Friends catching up', 'Family gathering', 'Big group', 'Business-meeting', 'Other']
|
89 |
|
90 |
-
|
|
|
|
|
91 |
if 'price' not in st.session_state:
|
92 |
-
st.session_state.price =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
# Configure Streamlit page and state
|
95 |
st.title("GoTogether!")
|
96 |
-
st.markdown(
|
97 |
-
"Tell us about your preferences!")
|
98 |
st.caption("In section 'Others', you can describe any wishes.")
|
99 |
|
100 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
|
|
|
|
102 |
food_1 = st.selectbox('Select the food type you prefer', st.session_state.food, key=1)
|
103 |
if food_1 == 'Other':
|
104 |
food_1 = st.text_input(label="Your description", placeholder="What kind of food would you like to eat?", key=10)
|
105 |
-
|
106 |
-
st.session_state.preferences_1.append(food_1)
|
107 |
|
108 |
ambiance_1 = st.selectbox('What describes your occasion the best?', st.session_state.ambiance, key=2)
|
109 |
if ambiance_1 == 'Other':
|
110 |
-
ambiance_1 = st.text_input(label="Your description", placeholder="How would you describe your meeting?", key=11)
|
111 |
-
|
112 |
-
price_1 = st.select_slider("Your preferred price range", options=('$', '$$', '$$$', '$$$$'), key=3)
|
113 |
|
114 |
-
st.
|
|
|
|
|
115 |
|
116 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
|
|
119 |
if food_2 == 'Other':
|
120 |
-
food_2 = st.text_input(label="Your description", placeholder="What kind of food would you like to eat?", key=
|
121 |
-
|
122 |
-
st.session_state.preferences_2.append(food_2)
|
123 |
|
124 |
ambiance_2 = st.selectbox('What describes your occasion the best?', st.session_state.ambiance, key=5)
|
125 |
if ambiance_2 == 'Other':
|
126 |
-
ambiance_2 = st.text_input(label="Your description", placeholder="How would you describe your meeting?", key=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
st.session_state.preferences_2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
if submit:
|
134 |
-
with st.spinner("Please wait while we are finding the best solution..."):
|
135 |
-
query = get_combined_preferences(st.session_state.preferences_1, st.session_state.preferences_2)
|
136 |
-
st.write("Your query is:", query)
|
137 |
-
results = return_top_k(query, k=10)
|
138 |
-
st.write("Here are the best matches to your preferences:")
|
139 |
-
i = 1
|
140 |
-
for name, score in results.items():
|
141 |
-
st.write("Top", i, ':', name, score)
|
142 |
-
condition = df['Names'] == name
|
143 |
-
# Use the condition to extract the value(s)
|
144 |
-
description = df.loc[condition, 'Strings']
|
145 |
-
st.write(description)
|
146 |
-
i+=1
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
# if input:
|
153 |
-
# input_embed = model.encode(input)
|
154 |
-
# sim_score = similarity_top(input_embed, icd_embeddings)
|
155 |
-
# i = 1
|
156 |
-
# for dis, value in sim_score:
|
157 |
-
# st.write(f":green[Prediction number] {i}:")
|
158 |
-
# st.write(f"{dis} (similarity score:", value, ")")
|
159 |
-
# i+= 1
|
160 |
-
|
161 |
-
# text_spinner_placeholder = st.empty()
|
162 |
-
# with st.spinner("Please wait while your visualizations are being generated..."):
|
163 |
-
# time.sleep(5)
|
164 |
-
# vis_results_2d(input_embed)
|
165 |
-
# vis_results_3d(input_embed)
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
# #TODO: implement price range as a sliding bar
|
|
|
|
|
|
|
|
9 |
from collections import defaultdict, Counter
|
10 |
from tqdm.auto import tqdm
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
+
import time
|
13 |
|
14 |
#Loading the model
|
15 |
@st.cache_resource
|
|
|
32 |
vectors_df = pd.read_csv('restaurants_dataframe_with_embeddings.csv')
|
33 |
embeds = dict(enumerate(vectors_df['Embeddings']))
|
34 |
rest_names = list(vectors_df['Names'])
|
35 |
+
vectors_df['Weights'] = [1]*len(vectors_df)
|
36 |
return embeds, rest_names, vectors_df
|
37 |
|
38 |
#type: dict; keys: 0-n
|
39 |
+
restaurants_embeds, rest_names, init_df = load_data()
|
40 |
|
41 |
model, tokenizer = get_models()
|
42 |
|
43 |
+
# query_params = st.experimental_get_query_params()
|
44 |
+
# st.write("query_params")
|
45 |
+
# st.write(query_params)
|
46 |
+
|
47 |
+
# def update_params():
|
48 |
+
# st.experimental_set_query_params(
|
49 |
+
# sorting=st.session_state.sort_by)
|
50 |
+
|
51 |
+
# if query_params:
|
52 |
+
# sort_by = query_params["sorting"][0]
|
53 |
+
# st.session_state.sort_by = sort_by
|
54 |
+
|
55 |
#a function that takes a sentence and converts it into embeddings
|
56 |
def get_bert_embeddings(sentence, model, tokenizer):
|
57 |
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True)
|
|
|
61 |
return embeddings
|
62 |
|
63 |
# a function that return top-K best restaurants
|
64 |
+
def compute_cos_sim(query):
|
65 |
embedded_query = get_bert_embeddings(query, model, tokenizer)
|
66 |
embedded_query = embedded_query.numpy()
|
67 |
+
top_similar = np.array([])
|
|
|
68 |
for i in range(len(restaurants_embeds)):
|
69 |
name = rest_names[i]
|
70 |
+
top_similar = np.append(top_similar, cosine_similarity(embedded_query, str_to_numpy(restaurants_embeds[i]))[0][0])
|
71 |
+
|
72 |
+
st.session_state.df['cos_sim'] = top_similar.tolist()
|
73 |
+
weights = np.array(st.session_state.df['Weights'])
|
74 |
+
#multiply weights by the cosine similarity
|
75 |
+
top_similar_weighted = dict(enumerate(np.multiply(top_similar, weights)))
|
76 |
+
|
77 |
+
st.session_state.df['Relevancy'] = top_similar_weighted.values()
|
78 |
+
return st.session_state.df
|
79 |
+
|
80 |
+
def sort_by_relevancy(k):
|
81 |
+
'''
|
82 |
+
k - int - how many top-matching places to show
|
83 |
+
'''
|
84 |
+
top_similar_weighted = dict(enumerate(st.session_state.precalculated_df['Relevancy']))
|
85 |
+
#sort in the descending order
|
86 |
+
top_similar_weighted = dict(sorted(top_similar_weighted.items(), key=lambda item: item[1], reverse=True))
|
87 |
+
#leave only K recommendations
|
88 |
+
top_k_similar = dict([(key, value) for key, value in top_similar_weighted.items()][:k])
|
89 |
+
#get restaurant names
|
90 |
+
names = [rest_names[i] for i in top_k_similar.keys()]
|
91 |
+
result = dict(zip(names, top_k_similar.values()))
|
92 |
+
return result
|
93 |
+
|
94 |
+
def sort_by_price(k):
|
95 |
+
'''
|
96 |
+
k - int - how many top-matching places to show
|
97 |
+
'''
|
98 |
+
relevance = np.array(st.session_state.precalculated_df['Relevancy'])
|
99 |
+
prices = np.array([st.session_state.price[str(val)] for val in st.session_state.precalculated_df['Price']])
|
100 |
+
top_similar_by_price = dict(enumerate(np.multiply(relevance, prices)))
|
101 |
+
st.session_state.precalculated_df['Sort_price'] = top_similar_by_price.values()
|
102 |
+
|
103 |
+
#sort in the descending order
|
104 |
+
top_similar_by_price = dict(sorted(top_similar_by_price.items(), key=lambda item: item[1], reverse=True))
|
105 |
+
#leave only K recommendations
|
106 |
+
top_k_similar = dict([(key, value) for key, value in top_similar_by_price.items()][:k])
|
107 |
+
#get restaurant names
|
108 |
+
names = [rest_names[i] for i in top_k_similar.keys()]
|
109 |
+
result = dict(zip(names, top_k_similar.values()))
|
110 |
+
return result
|
111 |
+
|
112 |
+
def sort_by_rating(k):
|
113 |
+
'''
|
114 |
+
k - int - how many top-matching places to show
|
115 |
+
'''
|
116 |
+
relevance = np.array(st.session_state.precalculated_df['Relevancy'])
|
117 |
+
rating = np.array(list(st.session_state.precalculated_df['Rating']))
|
118 |
+
top_similar_by_rating = dict(enumerate(np.multiply(relevance, rating)))
|
119 |
+
st.session_state.precalculated_df['Sort_rating'] = top_similar_by_rating.values()
|
120 |
|
121 |
+
#sort in the descending order
|
122 |
+
top_similar_by_rating = dict(sorted(top_similar_by_rating.items(), key=lambda item: item[1], reverse=True))
|
123 |
+
#leave only K recommendations
|
124 |
+
top_k_similar = dict([(key, value) for key, value in top_similar_by_rating.items()][:k])
|
125 |
+
#get restaurant names
|
126 |
+
names = [rest_names[i] for i in top_k_similar.keys()]
|
127 |
+
result = dict(zip(names, top_k_similar.values()))
|
128 |
return result
|
129 |
|
130 |
#combines 2 users preferences into 1 string and fetches best options
|
|
|
132 |
#TODO: optimize for more users
|
133 |
shared_pref = ''
|
134 |
for pref in user1:
|
135 |
+
shared_pref += pref.lower()
|
136 |
shared_pref += " "
|
137 |
shared_pref += " "
|
138 |
for pref in user2:
|
139 |
+
shared_pref += pref.lower()
|
140 |
shared_pref += " "
|
|
|
141 |
|
142 |
+
freq_words = Counter(shared_pref.split())
|
143 |
+
|
144 |
+
return shared_pref, freq_words
|
145 |
+
|
146 |
+
def filter_places(restrictions):
|
147 |
+
#punish the weight of places that don't fit restrictions
|
148 |
+
# st.write("Here are the restrictions you provided:")
|
149 |
+
# st.write(restrictions)
|
150 |
+
taboo = set([word.lower() for word in restrictions])
|
151 |
+
for i in range(len(st.session_state.df)):
|
152 |
+
descr = [word.lower() for word in st.session_state.df['Strings'][i].split()]
|
153 |
+
name = st.session_state.df['Names'][i]
|
154 |
+
for criteria in taboo:
|
155 |
+
if criteria not in descr:
|
156 |
+
st.session_state.df['Weights'][i] = 0.1 * st.session_state.df['Weights'][i]
|
157 |
+
|
158 |
+
|
159 |
+
return st.session_state.df
|
160 |
+
|
161 |
+
def promote_places(preferences):
|
162 |
+
'''
|
163 |
+
input type: dict()
|
164 |
+
a function that takes most common words, checks if descriptions fit them, increases their weight if they do
|
165 |
+
'''
|
166 |
+
#punish the weight of places that don't fit restrictions
|
167 |
+
# st.write("Here are the most common preferences you provided:")
|
168 |
+
# st.write(preferences)
|
169 |
+
|
170 |
+
for i in range(len(st.session_state.df)):
|
171 |
+
descr = [word.lower() for word in st.session_state.df['Strings'][i].split()]
|
172 |
+
name = st.session_state.df['Names'][i]
|
173 |
+
for pref in preferences:
|
174 |
+
if pref in descr:
|
175 |
+
st.session_state.df['Weights'][i] = 2 * st.session_state.df['Weights'][i]
|
176 |
+
|
177 |
+
return st.session_state.df
|
178 |
+
|
179 |
+
def generate_results(sort_by):
|
180 |
+
if sort_by == 'Price':
|
181 |
+
with st.spinner("Sorting your results by price..."):
|
182 |
+
st.write("Sorting your results by price...")
|
183 |
+
results = sort_by_price(10)
|
184 |
+
elif sort_by == 'Rating':
|
185 |
+
with st.spinner("Sorting your results by rating..."):
|
186 |
+
st.write("Sorting your results by rating...")
|
187 |
+
results = sort_by_rating(10)
|
188 |
+
elif sort_by == 'Relevancy (default)':
|
189 |
+
with st.spinner("Sorting your results by relevancy..."):
|
190 |
+
st.write("Sorting your results by relevancy...")
|
191 |
+
results = sort_by_relevancy(10)
|
192 |
+
else:
|
193 |
+
st.write("Sorry, we are still working on this option. For now, the results are sorted by relevance")
|
194 |
+
with st.spinner("Sorting your results by relevancy..."):
|
195 |
+
results = sort_by_relevancy(10)
|
196 |
+
return results
|
197 |
+
|
198 |
if 'preferences_1' not in st.session_state:
|
199 |
st.session_state.preferences_1 = []
|
200 |
|
|
|
207 |
if 'ambiance' not in st.session_state:
|
208 |
st.session_state.ambiance = ['Romantic date', 'Friends catching up', 'Family gathering', 'Big group', 'Business-meeting', 'Other']
|
209 |
|
210 |
+
if 'restrictions' not in st.session_state:
|
211 |
+
st.session_state.restrictions = []
|
212 |
+
|
213 |
if 'price' not in st.session_state:
|
214 |
+
st.session_state.price = {'$': 2, '₩': 2, '$$': 1, '₩₩': 1, '$$$': 0.5, '$$$$': 0.1, "nan": 1}
|
215 |
+
|
216 |
+
if 'sort_by' not in st.session_state:
|
217 |
+
st.session_state.sort_by = ''
|
218 |
+
|
219 |
+
if 'options' not in st.session_state:
|
220 |
+
st.session_state.options = ['Relevancy (default)', 'Price', 'Rating', 'Distance']
|
221 |
+
|
222 |
+
if 'df' not in st.session_state:
|
223 |
+
st.session_state.df = init_df
|
224 |
+
|
225 |
+
if 'precalculated_df' not in st.session_state:
|
226 |
+
st.session_state.precalculated_df = pd.DataFrame()
|
227 |
+
|
228 |
+
if 'stop_search' not in st.session_state:
|
229 |
+
st.session_state.stop_search = False
|
230 |
|
231 |
# Configure Streamlit page and state
|
232 |
st.title("GoTogether!")
|
233 |
+
st.markdown("Tell us about your preferences!")
|
|
|
234 |
st.caption("In section 'Others', you can describe any wishes.")
|
235 |
|
236 |
+
# options_disability_1 = st.multiselect(
|
237 |
+
# 'Do you need a wheelchair?',
|
238 |
+
# ['Yes', 'No'], ['No'], key=101)
|
239 |
+
|
240 |
+
# if options_disability_1 == 'Yes':
|
241 |
+
# st.session_state.restrictions.append('Wheelchair')
|
242 |
+
|
243 |
+
# price_1 = st.select_slider("Your preferred price range", options=('$', '$$', '$$$', '$$$$'), key=3)
|
244 |
+
|
245 |
+
# st.session_state.preferences_1.append(ambiance_1)
|
246 |
+
|
247 |
+
# Komplettes Beispiel für die Verwendung der 'with'-Notation
|
248 |
+
# with st.form('my_form_1'):
|
249 |
+
# st.subheader('**User 1**')
|
250 |
|
251 |
+
st.write("User 1")
|
252 |
+
# Eingabe-Widgets
|
253 |
food_1 = st.selectbox('Select the food type you prefer', st.session_state.food, key=1)
|
254 |
if food_1 == 'Other':
|
255 |
food_1 = st.text_input(label="Your description", placeholder="What kind of food would you like to eat?", key=10)
|
|
|
|
|
256 |
|
257 |
ambiance_1 = st.selectbox('What describes your occasion the best?', st.session_state.ambiance, key=2)
|
258 |
if ambiance_1 == 'Other':
|
259 |
+
ambiance_1 = st.text_input(label="Your description", placeholder="How would you describe your meeting?", key=11)
|
|
|
|
|
260 |
|
261 |
+
options_food_1 = st.multiselect(
|
262 |
+
'Do you have any dietary restrictions?',
|
263 |
+
['Vegan', 'Vegetarian', 'Halal'], key=100)
|
264 |
|
265 |
+
additional_1 = st.text_input(label="Your description", placeholder="Anything else you wanna share?", key=102)
|
266 |
+
|
267 |
+
with_kids = st.checkbox('I will come with kids', key=200)
|
268 |
+
|
269 |
+
# st.subheader('**User 2**')
|
270 |
+
st.write("User 2")
|
271 |
|
272 |
+
# Eingabe-Widgets
|
273 |
+
food_2 = st.selectbox('Select the food type you prefer', st.session_state.food, key=3)
|
274 |
if food_2 == 'Other':
|
275 |
+
food_2 = st.text_input(label="Your description", placeholder="What kind of food would you like to eat?", key=4)
|
|
|
|
|
276 |
|
277 |
ambiance_2 = st.selectbox('What describes your occasion the best?', st.session_state.ambiance, key=5)
|
278 |
if ambiance_2 == 'Other':
|
279 |
+
ambiance_2 = st.text_input(label="Your description", placeholder="How would you describe your meeting?", key=6)
|
280 |
+
|
281 |
+
options_food_2 = st.multiselect(
|
282 |
+
'Do you have any dietary restrictions?',
|
283 |
+
['Vegan', 'Vegetarian', 'Halal', 'Other'], key=7)
|
284 |
+
|
285 |
+
additional_2 = st.text_input(label="Your description", placeholder="Anything else you wanna share?", key=8)
|
286 |
+
|
287 |
+
with_kids_2 = st.checkbox('I will come with kids', key=201)
|
288 |
|
289 |
+
if len(st.session_state.preferences_1) == 0:
|
290 |
+
st.session_state.preferences_1.append(food_1)
|
291 |
+
st.session_state.preferences_1.append(ambiance_1)
|
292 |
+
st.session_state.restrictions.extend(options_food_1)
|
293 |
+
if additional_1:
|
294 |
+
st.session_state.preferences_1.append(additional_1)
|
295 |
+
if with_kids:
|
296 |
+
st.session_state.restrictions.append('kids')
|
297 |
|
298 |
+
if len(st.session_state.preferences_2) == 0:
|
299 |
+
st.session_state.preferences_2.append(food_2)
|
300 |
+
st.session_state.preferences_2.append(ambiance_2)
|
301 |
+
st.session_state.restrictions.extend(options_food_2)
|
302 |
+
if additional_2:
|
303 |
+
st.session_state.preferences_2.append(additional_2)
|
304 |
+
if with_kids_2:
|
305 |
+
st.session_state.restrictions.append('kids')
|
306 |
|
307 |
+
submitted = st.button('Submit!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
+
if submitted:
|
310 |
+
st.markdown("Thanks, we received your preferences!")
|
311 |
+
st.session_state.stop_search = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
+
else:
|
314 |
+
st.write('☝️ Describe your preferences!')
|
315 |
+
|
316 |
+
|
317 |
+
submit = st.button("Find best matches!", type='primary')
|
318 |
+
|
319 |
+
if submit or (not st.session_state.precalculated_df.empty):
|
320 |
+
with st.spinner("Please wait while we are finding the best solution..."):
|
321 |
+
if st.session_state.precalculated_df.empty:
|
322 |
+
query = get_combined_preferences(st.session_state.preferences_1, st.session_state.preferences_2)
|
323 |
+
st.write("Your query is:", query[0])
|
324 |
+
#sort places based on restrictions
|
325 |
+
st.session_state.precalculated_df = filter_places(st.session_state.restrictions)
|
326 |
+
#sort places by elevating preferrences
|
327 |
+
st.session_state.precalculated_df = promote_places(query[1])
|
328 |
+
st.session_state.precalculated_df = compute_cos_sim(query[0])
|
329 |
+
sort_by = st.selectbox(('Sort by:'), st.session_state.options, key=400,
|
330 |
+
index=st.session_state.options.index('Relevancy (default)'))
|
331 |
+
if sort_by:
|
332 |
+
st.session_state.sort_by = sort_by
|
333 |
+
results = generate_results(st.session_state.sort_by)
|
334 |
+
k = 10
|
335 |
+
st.write(f"Here are the best {k} matches to your preferences:")
|
336 |
+
i = 1
|
337 |
+
for name, score in results.items():
|
338 |
+
st.write("Top", i, ':', name, score)
|
339 |
+
condition = st.session_state.precalculated_df['Names'] == name
|
340 |
+
# Use the condition to extract the value(s)
|
341 |
+
description = st.session_state.precalculated_df.loc[condition, 'Strings']
|
342 |
+
st.write(description)
|
343 |
+
i+=1
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
stop = st.button("New search!", type='primary', key=500)
|
348 |
+
if stop:
|
349 |
+
st.session_state.preferences_1, st.session_state.preferences_2 = [], []
|
350 |
+
st.session_state.restrictions = []
|
351 |
+
st.session_state.sort_by = ""
|
352 |
+
st.session_state.df = init_df
|
353 |
+
st.session_state.precalculated_df = pd.DataFrame()
|
354 |
+
|
355 |
# #TODO: implement price range as a sliding bar
|
356 |
+
# When the user presses "New search", erase everything
|
357 |
+
# Propose URLs
|
358 |
+
# Show keywords instead of whole strings
|