Spaces:
Sleeping
Sleeping
Adjusted search algorithm
Browse filesfiltering and promotion are now done only for pre-defined categories
app.py
CHANGED
@@ -49,7 +49,16 @@ def get_bert_embeddings(sentence, model, tokenizer):
|
|
49 |
return embeddings
|
50 |
|
51 |
# a function that return top-K best restaurants
|
52 |
-
def compute_cos_sim(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
embedded_query = get_bert_embeddings(query, model, tokenizer)
|
54 |
embedded_query = embedded_query.numpy()
|
55 |
top_similar = np.array([])
|
@@ -171,28 +180,26 @@ def promote_places(preferences):
|
|
171 |
descr = [word.lower() for word in st.session_state.df['Strings'][i].split()]
|
172 |
name = st.session_state.df['Names'][i]
|
173 |
for pref in preferences:
|
174 |
-
if pref in descr:
|
175 |
st.session_state.df['Weights'][i] = 2 * st.session_state.df['Weights'][i]
|
176 |
|
177 |
return st.session_state.df
|
178 |
|
179 |
def generate_results(sort_by):
|
180 |
if sort_by == 'Price':
|
181 |
-
|
182 |
-
st.write("Sorting your results by price...")
|
183 |
-
results = sort_by_price(10)
|
184 |
elif sort_by == 'Rating':
|
185 |
-
with st.spinner("Sorting your results by rating..."):
|
186 |
-
|
187 |
-
|
188 |
elif sort_by == 'Relevancy (default)':
|
189 |
-
with st.spinner("Sorting your results by relevancy..."):
|
190 |
-
|
191 |
-
|
192 |
else:
|
193 |
-
st.write("Sorry, we are still working on this option. For now, the results are sorted by relevance")
|
194 |
-
with st.spinner("Sorting your results by relevancy..."):
|
195 |
-
|
196 |
return results
|
197 |
|
198 |
if 'preferences_1' not in st.session_state:
|
@@ -201,6 +208,12 @@ if 'preferences_1' not in st.session_state:
|
|
201 |
if 'preferences_2' not in st.session_state:
|
202 |
st.session_state.preferences_2 = []
|
203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
if 'food' not in st.session_state:
|
205 |
st.session_state.food = ['Coffee', 'Italian', 'Mexican', 'Chinese', 'Indian', 'Asian', 'Fast food', 'Other']
|
206 |
|
@@ -224,9 +237,6 @@ if 'df' not in st.session_state:
|
|
224 |
|
225 |
if 'precalculated_df' not in st.session_state:
|
226 |
st.session_state.precalculated_df = pd.DataFrame()
|
227 |
-
|
228 |
-
if 'stop_search' not in st.session_state:
|
229 |
-
st.session_state.stop_search = False
|
230 |
|
231 |
# Configure Streamlit page and state
|
232 |
st.title("GoTogether!")
|
@@ -299,7 +309,7 @@ if food_1 == 'Other':
|
|
299 |
ambiance_1 = st.selectbox('What describes your occasion the best?', st.session_state.ambiance, key=2)
|
300 |
if ambiance_1 == 'Other':
|
301 |
ambiance_1 = st.text_input(label="Your description", placeholder="How would you describe your meeting?", key=11)
|
302 |
-
|
303 |
options_food_1 = st.multiselect(
|
304 |
'Do you have any dietary restrictions?',
|
305 |
['Vegan', 'Vegetarian', 'Halal'], key=100)
|
@@ -329,16 +339,33 @@ with_kids_2 = st.checkbox('I will come with kids', key=201)
|
|
329 |
|
330 |
if len(st.session_state.preferences_1) == 0:
|
331 |
st.session_state.preferences_1.append(food_1)
|
|
|
|
|
|
|
|
|
332 |
st.session_state.preferences_1.append(ambiance_1)
|
|
|
|
|
|
|
|
|
|
|
333 |
st.session_state.restrictions.extend(options_food_1)
|
334 |
-
if additional_1:
|
335 |
-
st.session_state.preferences_1.append(additional_1)
|
336 |
if with_kids:
|
337 |
st.session_state.restrictions.append('kids')
|
338 |
-
|
|
|
|
|
339 |
if len(st.session_state.preferences_2) == 0:
|
340 |
st.session_state.preferences_2.append(food_2)
|
|
|
|
|
|
|
|
|
341 |
st.session_state.preferences_2.append(ambiance_2)
|
|
|
|
|
|
|
|
|
342 |
st.session_state.restrictions.extend(options_food_2)
|
343 |
if additional_2:
|
344 |
st.session_state.preferences_2.append(additional_2)
|
@@ -348,8 +375,9 @@ if len(st.session_state.preferences_2) == 0:
|
|
348 |
submitted = st.button('Submit!')
|
349 |
|
350 |
if submitted:
|
351 |
-
st.
|
352 |
-
|
|
|
353 |
|
354 |
else:
|
355 |
st.write('☝️ Describe your preferences!')
|
@@ -371,48 +399,51 @@ if submit or (not st.session_state.precalculated_df.empty):
|
|
371 |
index=st.session_state.options.index('Relevancy (default)'))
|
372 |
if sort_by:
|
373 |
st.session_state.sort_by = sort_by
|
374 |
-
results
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
condition = st.session_state.precalculated_df['Names'] == name
|
384 |
-
rating = st.session_state.precalculated_df.loc[condition, 'Rating'].values[0]
|
385 |
-
with st.expander(f":{nums_emojis[i]}: **{name}** **({str(rating)}**:star:): match score: {score}"):
|
386 |
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
st.write("Price category:", st.session_state.precalculated_df.loc[condition, 'Price'].values[0])
|
391 |
-
except:
|
392 |
-
pass
|
393 |
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
st.
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
# st.markdown("This is a text with <span style='font-size: 20px;'>bigger</span> and <i>italic</i> text.", unsafe_allow_html=True)
|
418 |
# st.markdown("<span style='font-size: 24px;'>This is larger text</span>", unsafe_allow_html=True)
|
@@ -425,6 +456,7 @@ if stop:
|
|
425 |
st.write("New search is launched. Please specify your preferences in the form!")
|
426 |
st.session_state.preferences_1, st.session_state.preferences_2 = [], []
|
427 |
st.session_state.restrictions = []
|
|
|
428 |
st.session_state.sort_by = ""
|
429 |
st.session_state.df = init_df
|
430 |
st.session_state.precalculated_df = pd.DataFrame()
|
|
|
49 |
return embeddings
|
50 |
|
51 |
# a function that return top-K best restaurants
|
52 |
+
def compute_cos_sim(input):
|
53 |
+
query = ""
|
54 |
+
query += input
|
55 |
+
|
56 |
+
# for el in st.session_state.preferences_1:
|
57 |
+
# query += el
|
58 |
+
# for el in st.session_state.preferences_2:
|
59 |
+
# query += el
|
60 |
+
|
61 |
+
st.write("Your query is", query)
|
62 |
embedded_query = get_bert_embeddings(query, model, tokenizer)
|
63 |
embedded_query = embedded_query.numpy()
|
64 |
top_similar = np.array([])
|
|
|
180 |
descr = [word.lower() for word in st.session_state.df['Strings'][i].split()]
|
181 |
name = st.session_state.df['Names'][i]
|
182 |
for pref in preferences:
|
183 |
+
if (pref in descr) & ((pref in st.session_state.food) or (pref in st.session_state.ambiance)):
|
184 |
st.session_state.df['Weights'][i] = 2 * st.session_state.df['Weights'][i]
|
185 |
|
186 |
return st.session_state.df
|
187 |
|
188 |
def generate_results(sort_by):
|
189 |
if sort_by == 'Price':
|
190 |
+
results = sort_by_price(10)
|
|
|
|
|
191 |
elif sort_by == 'Rating':
|
192 |
+
# with st.spinner("Sorting your results by rating..."):
|
193 |
+
# st.write("Sorting your results by rating...")
|
194 |
+
results = sort_by_rating(10)
|
195 |
elif sort_by == 'Relevancy (default)':
|
196 |
+
# with st.spinner("Sorting your results by relevancy..."):
|
197 |
+
# st.write("Sorting your results by relevancy...")
|
198 |
+
results = sort_by_relevancy(10)
|
199 |
else:
|
200 |
+
st.write(":pensive: Sorry, we are still working on this option. For now, the results are sorted by relevance")
|
201 |
+
# with st.spinner("Sorting your results by relevancy..."):
|
202 |
+
results = sort_by_relevancy(10)
|
203 |
return results
|
204 |
|
205 |
if 'preferences_1' not in st.session_state:
|
|
|
208 |
if 'preferences_2' not in st.session_state:
|
209 |
st.session_state.preferences_2 = []
|
210 |
|
211 |
+
if 'additional_1' not in st.session_state:
|
212 |
+
st.session_state.additional_1 = []
|
213 |
+
|
214 |
+
if 'additional_2' not in st.session_state:
|
215 |
+
st.session_state.additional_2 = []
|
216 |
+
|
217 |
if 'food' not in st.session_state:
|
218 |
st.session_state.food = ['Coffee', 'Italian', 'Mexican', 'Chinese', 'Indian', 'Asian', 'Fast food', 'Other']
|
219 |
|
|
|
237 |
|
238 |
if 'precalculated_df' not in st.session_state:
|
239 |
st.session_state.precalculated_df = pd.DataFrame()
|
|
|
|
|
|
|
240 |
|
241 |
# Configure Streamlit page and state
|
242 |
st.title("GoTogether!")
|
|
|
309 |
ambiance_1 = st.selectbox('What describes your occasion the best?', st.session_state.ambiance, key=2)
|
310 |
if ambiance_1 == 'Other':
|
311 |
ambiance_1 = st.text_input(label="Your description", placeholder="How would you describe your meeting?", key=11)
|
312 |
+
|
313 |
options_food_1 = st.multiselect(
|
314 |
'Do you have any dietary restrictions?',
|
315 |
['Vegan', 'Vegetarian', 'Halal'], key=100)
|
|
|
339 |
|
340 |
if len(st.session_state.preferences_1) == 0:
|
341 |
st.session_state.preferences_1.append(food_1)
|
342 |
+
# if food_1 in st.session_state.food:
|
343 |
+
# st.session_state.preferences_1.append(food_1)
|
344 |
+
# else:
|
345 |
+
# st.session_state.additional_1.append(food_1_o)
|
346 |
st.session_state.preferences_1.append(ambiance_1)
|
347 |
+
|
348 |
+
# if ambiance_1 in st.session_state.ambiance:
|
349 |
+
# st.session_state.preferences_1.append(ambiance_1)
|
350 |
+
# else:
|
351 |
+
# st.session_state.additional_1.append(ambiance_1_o)
|
352 |
st.session_state.restrictions.extend(options_food_1)
|
|
|
|
|
353 |
if with_kids:
|
354 |
st.session_state.restrictions.append('kids')
|
355 |
+
if additional_1:
|
356 |
+
st.session_state.preferences_1.append(additional_1)
|
357 |
+
|
358 |
if len(st.session_state.preferences_2) == 0:
|
359 |
st.session_state.preferences_2.append(food_2)
|
360 |
+
# if food_2 in st.session_state.food:
|
361 |
+
# st.session_state.preferences_2.append(food_2)
|
362 |
+
# else:
|
363 |
+
# st.session_state.additional_2.append(food_2_o)
|
364 |
st.session_state.preferences_2.append(ambiance_2)
|
365 |
+
# if ambiance_2 in st.session_state.ambiance:
|
366 |
+
# st.session_state.preferences_2.append(ambiance_2)
|
367 |
+
# else:
|
368 |
+
# st.session_state.additional_2.append(ambiance_2_o)
|
369 |
st.session_state.restrictions.extend(options_food_2)
|
370 |
if additional_2:
|
371 |
st.session_state.preferences_2.append(additional_2)
|
|
|
375 |
submitted = st.button('Submit!')
|
376 |
|
377 |
if submitted:
|
378 |
+
with st.spinner('Processing your request...'):
|
379 |
+
time.sleep(1)
|
380 |
+
st.success("Thanks, we received your preferences!")
|
381 |
|
382 |
else:
|
383 |
st.write('☝️ Describe your preferences!')
|
|
|
399 |
index=st.session_state.options.index('Relevancy (default)'))
|
400 |
if sort_by:
|
401 |
st.session_state.sort_by = sort_by
|
402 |
+
with st.spinner(f"Sorting your results by {sort_by.lower()}..."):
|
403 |
+
results = generate_results(st.session_state.sort_by)
|
404 |
+
k = 10
|
405 |
+
st.write(f"Here are the best {k} matches to your preferences:")
|
406 |
+
i = 1
|
407 |
+
nums = list(range(1, 11))
|
408 |
+
words = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'one: :zero']
|
409 |
+
nums_emojis = dict(zip(nums, words))
|
410 |
+
for name, score in results.items():
|
|
|
|
|
|
|
411 |
|
412 |
+
condition = st.session_state.precalculated_df['Names'] == name
|
413 |
+
rating = st.session_state.precalculated_df.loc[condition, 'Rating'].values[0]
|
414 |
+
with st.expander(f":{nums_emojis[i]}: **{name}** **({str(rating)}**:star:): match score: {score}"):
|
|
|
|
|
|
|
415 |
|
416 |
+
#f":{nums_emojis[i]}: **{name}** **({str(rating)}**:star:) :", 'match score:', score
|
417 |
+
try:
|
418 |
+
if type(st.session_state.precalculated_df.loc[condition, 'Price'].values[0]) == str:
|
419 |
+
st.write("Price category:", st.session_state.precalculated_df.loc[condition, 'Price'].values[0])
|
420 |
+
except:
|
421 |
+
pass
|
422 |
+
|
423 |
+
# Use the condition to extract the value(s)
|
424 |
+
# description = st.session_state.precalculated_df.loc[condition, 'Strings']
|
425 |
+
# st.write(description)
|
426 |
+
|
427 |
+
type = [item for item in eval(st.session_state.precalculated_df.loc[condition, 'Category'].values[0])]
|
428 |
+
# Display HTML with the custom styles
|
429 |
+
for word in type:
|
430 |
+
st.markdown(css, unsafe_allow_html=True)
|
431 |
+
st.markdown(f'<div class="blue-box">{word}</div>', unsafe_allow_html=True)
|
432 |
+
# st.write("Restaurant type:", str(type))
|
433 |
+
|
434 |
+
keywords = [item[0] for item in eval(st.session_state.precalculated_df.loc[condition, 'Keywords'].values[0]) if item[1] > 2]
|
435 |
+
for pair in keywords[:3]:
|
436 |
+
st.markdown(css, unsafe_allow_html=True)
|
437 |
+
st.markdown(f'<div class="orange-box">{pair[0]} {pair[1]}</div>', unsafe_allow_html=True)
|
438 |
+
# st.write("Restaurant type:", str(type))
|
439 |
+
|
440 |
+
|
441 |
+
url = st.session_state.precalculated_df.loc[condition, 'URL'].values[0]
|
442 |
+
st.write(f"_Check on the_ [_map_]({url})")
|
443 |
+
|
444 |
+
st.write(st.session_state.precalculated_df.loc[condition, 'Strings'].values[0])
|
445 |
+
|
446 |
+
i+=1
|
447 |
|
448 |
# st.markdown("This is a text with <span style='font-size: 20px;'>bigger</span> and <i>italic</i> text.", unsafe_allow_html=True)
|
449 |
# st.markdown("<span style='font-size: 24px;'>This is larger text</span>", unsafe_allow_html=True)
|
|
|
456 |
st.write("New search is launched. Please specify your preferences in the form!")
|
457 |
st.session_state.preferences_1, st.session_state.preferences_2 = [], []
|
458 |
st.session_state.restrictions = []
|
459 |
+
st.session_state.additional_1, st.session_state.additional_2 = [], []
|
460 |
st.session_state.sort_by = ""
|
461 |
st.session_state.df = init_df
|
462 |
st.session_state.precalculated_df = pd.DataFrame()
|