Spaces:
Sleeping
Sleeping
Added design to the outputs
Browse files
app.py
CHANGED
@@ -29,7 +29,7 @@ def str_to_numpy(array_string):
|
|
29 |
|
30 |
@st.cache_data # π Add the caching decorator
|
31 |
def load_data():
|
32 |
-
vectors_df = pd.read_csv('restaurants_dataframe_with_embeddings.csv')
|
33 |
embeds = dict(enumerate(vectors_df['Embeddings']))
|
34 |
rest_names = list(vectors_df['Names'])
|
35 |
vectors_df['Weights'] = [1]*len(vectors_df)
|
@@ -40,18 +40,6 @@ restaurants_embeds, rest_names, init_df = load_data()
|
|
40 |
|
41 |
model, tokenizer = get_models()
|
42 |
|
43 |
-
# query_params = st.experimental_get_query_params()
|
44 |
-
# st.write("query_params")
|
45 |
-
# st.write(query_params)
|
46 |
-
|
47 |
-
# def update_params():
|
48 |
-
# st.experimental_set_query_params(
|
49 |
-
# sorting=st.session_state.sort_by)
|
50 |
-
|
51 |
-
# if query_params:
|
52 |
-
# sort_by = query_params["sorting"][0]
|
53 |
-
# st.session_state.sort_by = sort_by
|
54 |
-
|
55 |
#a function that takes a sentence and converts it into embeddings
|
56 |
def get_bert_embeddings(sentence, model, tokenizer):
|
57 |
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True)
|
@@ -233,6 +221,28 @@ st.title("GoTogether!")
|
|
233 |
st.markdown("Tell us about your preferences!")
|
234 |
st.caption("In section 'Others', you can describe any wishes.")
|
235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
# options_disability_1 = st.multiselect(
|
237 |
# 'Do you need a wheelchair?',
|
238 |
# ['Yes', 'No'], ['No'], key=101)
|
@@ -280,7 +290,7 @@ if ambiance_2 == 'Other':
|
|
280 |
|
281 |
options_food_2 = st.multiselect(
|
282 |
'Do you have any dietary restrictions?',
|
283 |
-
['Vegan', 'Vegetarian', 'Halal'
|
284 |
|
285 |
additional_2 = st.text_input(label="Your description", placeholder="Anything else you wanna share?", key=8)
|
286 |
|
@@ -334,18 +344,45 @@ if submit or (not st.session_state.precalculated_df.empty):
|
|
334 |
k = 10
|
335 |
st.write(f"Here are the best {k} matches to your preferences:")
|
336 |
i = 1
|
|
|
|
|
|
|
337 |
for name, score in results.items():
|
338 |
-
|
339 |
condition = st.session_state.precalculated_df['Names'] == name
|
|
|
|
|
|
|
340 |
# Use the condition to extract the value(s)
|
341 |
-
description = st.session_state.precalculated_df.loc[condition, 'Strings']
|
342 |
-
st.write(description)
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
|
346 |
|
347 |
stop = st.button("New search!", type='primary', key=500)
|
348 |
if stop:
|
|
|
349 |
st.session_state.preferences_1, st.session_state.preferences_2 = [], []
|
350 |
st.session_state.restrictions = []
|
351 |
st.session_state.sort_by = ""
|
|
|
29 |
|
30 |
@st.cache_data # π Add the caching decorator
|
31 |
def load_data():
|
32 |
+
vectors_df = pd.read_csv('restaurants_dataframe_with_embeddings.csv', encoding="utf-8")
|
33 |
embeds = dict(enumerate(vectors_df['Embeddings']))
|
34 |
rest_names = list(vectors_df['Names'])
|
35 |
vectors_df['Weights'] = [1]*len(vectors_df)
|
|
|
40 |
|
41 |
model, tokenizer = get_models()
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
#a function that takes a sentence and converts it into embeddings
|
44 |
def get_bert_embeddings(sentence, model, tokenizer):
|
45 |
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True)
|
|
|
221 |
st.markdown("Tell us about your preferences!")
|
222 |
st.caption("In section 'Others', you can describe any wishes.")
|
223 |
|
224 |
+
|
225 |
+
# Define custom CSS styles for the orange and blue rectangles
|
226 |
+
css = """
|
227 |
+
<style>
|
228 |
+
.orange-box {
|
229 |
+
background-color: orange;
|
230 |
+
border: 2px solid darkred;
|
231 |
+
border-radius: 10px;
|
232 |
+
display: inline-block;
|
233 |
+
padding: 5px 10px;
|
234 |
+
}
|
235 |
+
|
236 |
+
.blue-box {
|
237 |
+
background-color: lightblue;
|
238 |
+
border: 2px solid navy;
|
239 |
+
border-radius: 10px;
|
240 |
+
display: inline-block;
|
241 |
+
padding: 5px 10px;
|
242 |
+
}
|
243 |
+
</style>
|
244 |
+
"""
|
245 |
+
|
246 |
# options_disability_1 = st.multiselect(
|
247 |
# 'Do you need a wheelchair?',
|
248 |
# ['Yes', 'No'], ['No'], key=101)
|
|
|
290 |
|
291 |
options_food_2 = st.multiselect(
|
292 |
'Do you have any dietary restrictions?',
|
293 |
+
['Vegan', 'Vegetarian', 'Halal'], key=7)
|
294 |
|
295 |
additional_2 = st.text_input(label="Your description", placeholder="Anything else you wanna share?", key=8)
|
296 |
|
|
|
344 |
k = 10
|
345 |
st.write(f"Here are the best {k} matches to your preferences:")
|
346 |
i = 1
|
347 |
+
nums = list(range(1, 11))
|
348 |
+
words = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'one: :zero']
|
349 |
+
nums_emojis = dict(zip(nums, words))
|
350 |
for name, score in results.items():
|
351 |
+
|
352 |
condition = st.session_state.precalculated_df['Names'] == name
|
353 |
+
rating = st.session_state.precalculated_df.loc[condition, 'Rating'].values[0]
|
354 |
+
st.write(f":{nums_emojis[i]}: **{name}** **({str(rating)}**:star:) :", 'match score:', score)
|
355 |
+
|
356 |
# Use the condition to extract the value(s)
|
357 |
+
# description = st.session_state.precalculated_df.loc[condition, 'Strings']
|
358 |
+
# st.write(description)
|
359 |
+
|
360 |
+
type = [item for item in eval(st.session_state.precalculated_df.loc[condition, 'Category'].values[0])]
|
361 |
+
# Display HTML with the custom styles
|
362 |
+
for word in type:
|
363 |
+
st.markdown(css, unsafe_allow_html=True)
|
364 |
+
st.markdown(f'<div class="blue-box">{word}</div>', unsafe_allow_html=True)
|
365 |
+
# st.write("Restaurant type:", str(type))
|
366 |
+
|
367 |
+
keywords = [item[0] for item in eval(st.session_state.precalculated_df.loc[condition, 'Keywords'].values[0])]
|
368 |
+
for pair in keywords[:3]:
|
369 |
+
st.markdown(css, unsafe_allow_html=True)
|
370 |
+
st.markdown(f'<div class="orange-box">{pair[0]} {pair[1]}</div>', unsafe_allow_html=True)
|
371 |
+
# st.write("Restaurant type:", str(type))
|
372 |
+
|
373 |
+
|
374 |
+
url = st.session_state.precalculated_df.loc[condition, 'URL'].values[0]
|
375 |
+
st.write("_Check on the map:_", url)
|
376 |
+
|
377 |
+
# st.markdown("This is a text with <span style='font-size: 20px;'>bigger</span> and <i>italic</i> text.", unsafe_allow_html=True)
|
378 |
+
# st.markdown("<span style='font-size: 24px;'>This is larger text</span>", unsafe_allow_html=True)
|
379 |
+
|
380 |
|
381 |
|
382 |
|
383 |
stop = st.button("New search!", type='primary', key=500)
|
384 |
if stop:
|
385 |
+
st.write("New search is launched. Please specify your preferences in the form!")
|
386 |
st.session_state.preferences_1, st.session_state.preferences_2 = [], []
|
387 |
st.session_state.restrictions = []
|
388 |
st.session_state.sort_by = ""
|