Spaces:
Running
Running
import gradio as gr | |
from transformers import RobertaTokenizer, RobertaForSequenceClassification | |
import torch | |
# Load the model and tokenizer from the specified directory | |
model_path = 'GoalZero/aidetection-ada-v0.1' | |
tokenizer = RobertaTokenizer.from_pretrained(model_path) | |
model = RobertaForSequenceClassification.from_pretrained(model_path) | |
# Define the prediction function | |
def classify_text(text): | |
# Remove periods and new lines from the input text | |
cleaned_text = text.replace('.', '').replace('\n', ' ') | |
# Tokenize the cleaned input text | |
inputs = tokenizer(cleaned_text, return_tensors='pt', padding=True, truncation=True, max_length=128) | |
# Get the model's prediction | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Apply softmax to get probabilities | |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
# Get the probability of the class '1' | |
prob_1 = probabilities[0][1].item() | |
return {"Probability of being AI": prob_1} | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=classify_text, | |
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), | |
outputs="json", | |
title="GoalZero Ada v0.1 Demo", | |
description="Enter some text and get the probability of the text being written by AI. Full checkpoints of the model will be released soon.", | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch(share=True) |