import gradio as gr import os import subprocess import tempfile import shutil from zipfile import ZipFile import logging import json import threading import psutil from flask import Flask, request, jsonify # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize Flask app app = Flask(__name__) connected_cpus = {} # Endpoint to donate CPU resources @app.route('/donate_cpu', methods=['POST']) def donate_cpu_handler(): data = request.get_json() host = data['host'] cpu_count = data['cpu_count'] connected_cpus[host] = {"cpu_count": cpu_count, "usage": 0.0} logger.info(f"CPU donated by {host} with {cpu_count} CPUs.") return jsonify({"status": "success", "message": f"CPU donated by {host}"}) # Endpoint to update CPU usage @app.route('/update_cpu_usage', methods=['POST']) def update_cpu_usage_handler(): data = request.get_json() host = data['host'] usage = data['usage'] if host in connected_cpus: connected_cpus[host]['usage'] = usage logger.info(f"Updated CPU usage for {host}: {usage}%") return jsonify({"status": "success"}) # Function to run the provided Python script using MPI def run_script(script_name, folder_path): output_log = tempfile.TemporaryFile(mode='w+t') try: # Collect all available CPUs total_cpus = sum(cpu['cpu_count'] for cpu in connected_cpus.values()) # Run the script using MPI result = subprocess.run(['mpiexec', '-n', str(total_cpus), 'python', script_name], cwd=folder_path, stdout=output_log, stderr=subprocess.STDOUT) output_log.seek(0) log_output = output_log.read() except Exception as e: log_output = str(e) finally: output_log.close() return log_output # Function to handle file uploads and script execution def handle_upload(folder, script_name): # Create a temporary directory to store uploaded files temp_dir = tempfile.mkdtemp() # Save the uploaded folder contents to the temporary directory folder_path = os.path.join(temp_dir, 'uploaded_folder') os.makedirs(folder_path, exist_ok=True) for file_name, file_obj in folder.items(): with open(os.path.join(folder_path, file_name), 'wb') as f: f.write(file_obj.read()) # Run the script log_output = run_script(script_name, folder_path) # Create a zip file of the entire folder (including any new files created by the script) zip_path = os.path.join(temp_dir, 'output_folder.zip') with ZipFile(zip_path, 'w') as zipf: for root, _, files in os.walk(folder_path): for file in files: zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), folder_path)) return log_output, zip_path # Function to get connected CPUs information def get_cpu_info(): info = [] for host, data in connected_cpus.items(): info.append(f"{host}: {data['cpu_count']} CPUs, {data['usage']}% usage") return "\n".join(info) # Gradio interface def gradio_interface(): interface_inputs = [ gr.File(label="Upload Folder", file_count="multiple", file_types=['file']), gr.Textbox(label="Python Script Name") ] interface_outputs = [ gr.Textbox(label="Log Output", interactive=False), gr.File(label="Download Output Folder"), gr.Textbox(label="Connected CPUs Info", interactive=False) ] iface = gr.Interface( fn=handle_upload, inputs=interface_inputs, outputs=interface_outputs, live=True, theme="light" # Specify a theme that works, "light" is an example ) iface.launch() # Launch the Gradio interface using Flask's run method if __name__ == "__main__": gradio_interface() # Uncomment the line below if using Flask's run method for local testing # app.run(host='0.0.0.0', port=7860)