File size: 3,446 Bytes
002b092
9f54a3b
 
 
eb4a24d
dab5cc9
9f54a3b
eb4a24d
9f54a3b
 
8ff67d3
 
9f54a3b
8ff67d3
 
2a7dbb2
9f54a3b
 
8ff67d3
 
cc778b2
 
8ff67d3
0ca86ba
9f54a3b
cc778b2
eb4a24d
142827c
 
 
 
9f54a3b
eb4a24d
 
 
142827c
eb4a24d
e3a575c
142827c
cc778b2
98c29f4
5fad261
 
98c29f4
e3a575c
5fad261
 
98c29f4
5fad261
98c29f4
 
5fad261
98c29f4
142827c
eb4a24d
2a7dbb2
93979c3
eabc41f
 
 
 
 
 
 
 
8ff67d3
9f54a3b
 
 
 
 
 
 
 
 
 
 
 
eb4a24d
9f54a3b
 
 
 
 
 
 
002b092
 
 
 
 
 
 
eb4a24d
002b092
 
 
 
 
 
eb4a24d
002b092
 
 
 
8ff67d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv
load_dotenv()

# Initialize the OpenAI client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')  # Replace with your token
)

# Create supported model
model_links = {
    "Zephyr-7B": "HuggingFaceH4/zephyr-7b-beta"
}

# Pull info about the model to display
model_info = {
    "Zephyr-7B-β": {
        'description': """The **Zephyr 7B β** is a next-gen **GPT-like Large Language Model (LLM)** fine-tuned from Mistral-7B-v0.1, containing 7 billion parameters. This model is optimized for educational tasks and excels at science-related Q&A with high accuracy and performance.\n"""
    }
}


# Reset the conversation
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []
    return None

# App title and description
st.title("Sci-Mom 👩‍🏫 ")
st.subheader("AI chatbot for Solving your doubts 📚 :)")

# Custom description for SciMom in the sidebar
st.sidebar.write("Built for my mom, with love ❤️.")

st.sidebar.markdown(model_info["Zephyr-7B-β"]['description'])
st.sidebar.markdown("""
### Zephyr 7B β 🤖
Your personal science assistant, built with **7 billion parameters** to help with all your science Q&As.

- **Trained using Ultrachat Feedbacks**!
- **Quick & Smart**: Handles easy to tough topics like a pro.
- **Accurate**: Reliable answers every time.

Need help with science? Zephyr’s got your back! 🔬📘
""")


st.sidebar.markdown("By Gokulnath ♔")

# If model selection was needed (now removed)
selected_model = "Zephyr-7B"  # Only one model remains

if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    st.session_state.prev_option = selected_model
    reset_conversation()

# Pull in the model we want to use
repo_id = model_links[selected_model]

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input("Ask Scimom!"):
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    st.session_state.messages.append({"role": "user", "content": prompt})

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        try:
            stream = client.chat.completions.create(
                model=model_links[selected_model],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                temperature=0.5,  # Default temperature setting
                stream=True,
                max_tokens=3000,
            )
            response = st.write_stream(stream)

        except Exception as e:
            response = "😵‍💫 Something went wrong. Please try again later."
            st.write(response)
            st.write("This was the error message:")
            st.write(e)

    st.session_state.messages.append({"role": "assistant", "content": response})