File size: 3,644 Bytes
002b092
9f54a3b
 
 
eb4a24d
dab5cc9
9f54a3b
eb4a24d
9f54a3b
 
8ff67d3
 
9f54a3b
8ff67d3
 
 
9f54a3b
 
8ff67d3
 
 
eb4a24d
 
 
 
8ff67d3
0ca86ba
9f54a3b
eb4a24d
142827c
 
 
 
9f54a3b
eb4a24d
 
 
142827c
eb4a24d
 
 
142827c
eb4a24d
 
 
142827c
eb4a24d
 
93979c3
eabc41f
 
 
 
 
 
 
 
8ff67d3
9f54a3b
 
 
 
 
 
 
 
 
 
 
 
eb4a24d
9f54a3b
 
 
 
 
 
 
002b092
 
 
 
 
 
 
eb4a24d
002b092
 
 
 
 
 
eb4a24d
002b092
 
 
 
8ff67d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv
load_dotenv()

# Initialize the OpenAI client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')  # Replace with your token
)

# Create supported model
model_links = {
    "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
}

# Pull info about the model to display
model_info = {
    "Meta-Llama-3-8B": {
        'description': """The Llama (3) model is a **Large Language Model (LLM)** designed to assist with question and answer interactions.\n
        \nThis model was created by Meta's AI team and has over 8 billion parameters.\n
        **Training**: The model was fine-tuned on science textbooks from the NCERT curriculum using Docker AutoTrain to ensure it can provide relevant and accurate responses in the education domain.\n
        **Purpose**: This version of Llama has been trained specifically for educational purposes, focusing on answering science-related queries in a clear and simple manner to help students and teachers alike.\n"""
    }
}

# Reset the conversation
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []
    return None

# App title and description
st.title("Sci-Mom πŸ‘©β€πŸ« ")
st.subheader("AI chatbot for Solving your doubts πŸ“š :)")

# Custom description for SciMom in the sidebar
st.sidebar.write("Built for my mom, with love ❀️. This model is pretrained with textbooks of Science NCERT.")
st.sidebar.write("Base-Model used: Meta Llama, trained using: Docker AutoTrain.")

# Add technical details in the sidebar
st.sidebar.markdown(model_info["Meta-Llama-3-8B"]['description'])
st.sidebar.markdown("*By Gokulnath β™” *")

# If model selection was needed (now removed)
selected_model = "Meta-Llama-3-8B"  # Only one model remains

if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    st.session_state.prev_option = selected_model
    reset_conversation()

# Pull in the model we want to use
repo_id = model_links[selected_model]

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input("Ask Scimom!"):
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    st.session_state.messages.append({"role": "user", "content": prompt})

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        try:
            stream = client.chat.completions.create(
                model=model_links[selected_model],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                temperature=0.5,  # Default temperature setting
                stream=True,
                max_tokens=3000,
            )
            response = st.write_stream(stream)

        except Exception as e:
            response = "πŸ˜΅β€πŸ’« Something went wrong. Please try again later."
            st.write(response)
            st.write("This was the error message:")
            st.write(e)

    st.session_state.messages.append({"role": "assistant", "content": response})