Golfies commited on
Commit
7cddaa4
·
verified ·
1 Parent(s): da64a51

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +120 -120
app.py CHANGED
@@ -1,120 +1,120 @@
1
- import os
2
- import gradio as gr
3
- import cv2
4
- from PIL import Image
5
- import numpy as np
6
- from transformers import AutoModelForImageSegmentation
7
- import torch
8
- from torchvision import transforms
9
- import spaces # Import ZeroGPU support
10
-
11
- # Detect if CUDA is available; otherwise, fallback to CPU
12
- device = "cuda" if torch.cuda.is_available() else "cpu"
13
-
14
- # Load BiRefNet model
15
- torch.set_float32_matmul_precision(["high", "highest"][0])
16
- birefnet = AutoModelForImageSegmentation.from_pretrained(
17
- "ZhengPeng7/BiRefNet", trust_remote_code=True
18
- )
19
- birefnet.to(device)
20
-
21
- # Image transformation pipeline
22
- transform_image = transforms.Compose(
23
- [
24
- transforms.Resize((1024, 1024)),
25
- transforms.ToTensor(),
26
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
27
- ]
28
- )
29
-
30
- @spaces.GPU(duration=70) # Decorate to ensure GPU is allocated only during model loading
31
-
32
- # Function to extract the subject using BiRefNet and create a mask
33
- def create_mask(image):
34
- image_size = image.size
35
- input_images = transform_image(image).unsqueeze(0).to(device)
36
-
37
- with torch.no_grad():
38
- preds = birefnet(input_images)[-1].sigmoid().cpu() # Always move results to CPU for processing
39
-
40
- pred = preds[0].squeeze()
41
- mask_pil = transforms.ToPILImage()(pred)
42
- mask = mask_pil.resize(image_size)
43
-
44
- return mask
45
-
46
- # Function to apply the pink filter-like color change
47
- def apply_filter(image, mask=None, apply_to_subject=True):
48
- # Convert image to numpy array
49
- image_np = np.array(image.convert("RGBA"))
50
-
51
- # Define the pink color in RGBA
52
- pink_color = np.array([255, 0, 255, 128]) # Pink color with transparency (alpha = 128)
53
-
54
- if apply_to_subject and mask is not None:
55
- # Convert mask to numpy array
56
- mask_np = np.array(mask)
57
-
58
- # Blend the original image with the pink color where the mask is applied
59
- for i in range(image_np.shape[0]):
60
- for j in range(image_np.shape[1]):
61
- if mask_np[i, j] > 128: # Check if the mask value indicates subject presence
62
- image_np[i, j] = (image_np[i, j] * 0.5 + pink_color * 0.5).astype(np.uint8)
63
- else:
64
- # Apply the pink filter to the whole image if no subject is detected or if chosen by user
65
- image_np = (image_np * 0.5 + pink_color * 0.5).astype(np.uint8)
66
-
67
- # Convert back to PIL image
68
- result_image = Image.fromarray(image_np)
69
-
70
- return result_image
71
-
72
- # Main processing function for Gradio
73
- def process(input_image, subject_choice):
74
- if input_image is None:
75
- raise gr.Error('Please upload an input image')
76
-
77
- # Convert input image to PIL image
78
- original_image = Image.fromarray(input_image)
79
-
80
- # Default mask is None
81
- mask = None
82
-
83
- # Generate mask using BiRefNet if the user selected "Subject Only"
84
- if subject_choice == "Subject Only":
85
- mask = create_mask(original_image)
86
-
87
- # Apply pink filter based on user choice
88
- apply_to_subject = (subject_choice == "Subject Only" and mask is not None)
89
- result_image = apply_filter(original_image, mask, apply_to_subject)
90
-
91
- return result_image
92
-
93
- # Define Gradio Interface
94
- block = gr.Blocks()
95
-
96
- with block:
97
- with gr.Row():
98
- gr.Markdown("Apply Pink Filter Effect to Subject or Full Image")
99
-
100
- with gr.Row():
101
- with gr.Column():
102
- input_image = gr.Image(type="numpy", label="Input Image", height=640)
103
- subject_choice = gr.Radio(
104
- choices=["Subject Only", "Full Image"],
105
- value="Subject Only",
106
- label="Apply Pink Filter to:"
107
- )
108
- run_button = gr.Button("Run")
109
-
110
- with gr.Column():
111
- output_image = gr.Image(label="Output Image")
112
-
113
- # Set the processing function
114
- run_button.click(
115
- fn=process,
116
- inputs=[input_image, subject_choice],
117
- outputs=output_image
118
- )
119
-
120
- block.launch()
 
1
+ import os
2
+ import gradio as gr
3
+ import cv2
4
+ from PIL import Image
5
+ import numpy as np
6
+ from transformers import AutoModelForImageSegmentation
7
+ import torch
8
+ from torchvision import transforms
9
+ import spaces # Import ZeroGPU support
10
+
11
+ # Detect if CUDA is available; otherwise, fallback to CPU
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
13
+
14
+ # Load BiRefNet model
15
+ torch.set_float32_matmul_precision(["high", "highest"][0])
16
+ birefnet = AutoModelForImageSegmentation.from_pretrained(
17
+ "ZhengPeng7/BiRefNet", trust_remote_code=True
18
+ )
19
+ birefnet.to(device)
20
+
21
+ # Image transformation pipeline
22
+ transform_image = transforms.Compose(
23
+ [
24
+ transforms.Resize((1024, 1024)),
25
+ transforms.ToTensor(),
26
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
27
+ ]
28
+ )
29
+
30
+ @spaces.GPU(duration=70) # Decorate to ensure GPU is allocated only during model loading
31
+
32
+ # Function to extract the subject using BiRefNet and create a mask
33
+ def create_mask(image):
34
+ image_size = image.size
35
+ input_images = transform_image(image).unsqueeze(0).to(device)
36
+
37
+ with torch.no_grad():
38
+ preds = birefnet(input_images)[-1].sigmoid().cpu() # Always move results to CPU for processing
39
+
40
+ pred = preds[0].squeeze()
41
+ mask_pil = transforms.ToPILImage()(pred)
42
+ mask = mask_pil.resize(image_size)
43
+
44
+ return mask
45
+
46
+ # Function to apply the pink filter-like color change
47
+ def apply_filter(image, mask=None, apply_to_subject=True):
48
+ # Convert image to numpy array
49
+ image_np = np.array(image.convert("RGBA"))
50
+
51
+ # Define the pink color in RGBA
52
+ pink_color = np.array([255, 0, 255, 128]) # Pink color with transparency (alpha = 128)
53
+
54
+ if apply_to_subject and mask is not None:
55
+ # Convert mask to numpy array
56
+ mask_np = np.array(mask)
57
+
58
+ # Blend the original image with the pink color where the mask is applied
59
+ for i in range(image_np.shape[0]):
60
+ for j in range(image_np.shape[1]):
61
+ if mask_np[i, j] > 128: # Check if the mask value indicates subject presence
62
+ image_np[i, j] = (image_np[i, j] * 0.5 + pink_color * 0.5).astype(np.uint8)
63
+ else:
64
+ # Apply the pink filter to the whole image if no subject is detected or if chosen by user
65
+ image_np = (image_np * 0.5 + pink_color * 0.5).astype(np.uint8)
66
+
67
+ # Convert back to PIL image
68
+ result_image = Image.fromarray(image_np)
69
+
70
+ return result_image
71
+
72
+ # Main processing function for Gradio
73
+ def process(input_image, subject_choice):
74
+ if input_image is None:
75
+ raise gr.Error('Please upload an input image')
76
+
77
+ # Convert input image to PIL image
78
+ original_image = Image.fromarray(input_image)
79
+
80
+ # Default mask is None
81
+ mask = None
82
+
83
+ # Generate mask using BiRefNet if the user selected "Subject Only"
84
+ if subject_choice == "Subject Only":
85
+ mask = create_mask(original_image)
86
+
87
+ # Apply pink filter based on user choice
88
+ apply_to_subject = (subject_choice == "Subject Only" and mask is not None)
89
+ result_image = apply_filter(original_image, mask, apply_to_subject)
90
+
91
+ return result_image
92
+
93
+ # Define Gradio Interface
94
+ block = gr.Blocks()
95
+
96
+ with block:
97
+ with gr.Row():
98
+ gr.Markdown("Apply Pink Filter Effect to Subject or Full Image")
99
+
100
+ with gr.Row():
101
+ with gr.Column():
102
+ input_image = gr.Image(type="numpy", label="Input Image", height=640)
103
+ subject_choice = gr.Radio(
104
+ choices=["Subject Only", "Full Image"],
105
+ value="Subject Only",
106
+ label="Apply Pink Filter to:"
107
+ )
108
+ run_button = gr.Button("Run")
109
+
110
+ with gr.Column():
111
+ output_image = gr.Image(label="Output Image")
112
+
113
+ # Set the processing function
114
+ run_button.click(
115
+ fn=process,
116
+ inputs=[input_image, subject_choice],
117
+ outputs=output_image
118
+ )
119
+
120
+ block.launch()