Spaces:
Running
Running
File size: 4,272 Bytes
20f80cf 279da4f 20f80cf 279da4f 20f80cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
---
title: Dish Decode 2
emoji: π
colorFrom: purple
colorTo: pink
sdk: docker
pinned: false
license: mit
short_description: Structure recipe information from videos
---
# π½οΈ Recipe Extraction API
This project is a Flask-based API that extracts structured recipe information from cooking tutorial videos! It uses the **Deepgram API** for audio transcription, **Tesseract OCR** for text extraction from video frames, and the **Gemini API** to generate a well-structured recipe document. π
---
## π¦ Project Setup
Follow these steps to set up and run the project on your local machine.
### 1οΈβ£ Clone the Repository
```bash
git clone <your-repo-url>
cd <your-repo-folder>
```
### 2οΈβ£ Install Dependencies
Make sure you have Python installed (Python 3.8 or above is recommended). Install the required libraries using pip:
```bash
pip install -r requirements.txt
```
### 3οΈβ£ Install Tesseract OCR
Ensure **Tesseract OCR** is installed on your system. You can download it here: [Tesseract GitHub](https://github.com/tesseract-ocr/tesseract)
Add Tesseract to your system path and make sure to note its installation location.
#### On Windows:
Add the path to `tesseract.exe` to your environment variables, e.g.:
```bash
C:\Program Files\Tesseract-OCR
```
#### On MacOS (using Homebrew):
```bash
brew install tesseract
```
#### On Ubuntu:
```bash
sudo apt-get install tesseract-ocr
```
### 4οΈβ£ Setup Environment Variables
Create a `.env` file in the root directory and add your API keys:
```plaintext
FIRST_API_KEY=<Your Gemini API Key>
SECOND_API_KEY=<Your Deepgram API Key>
```
### 5οΈβ£ Install FFmpeg
This project uses **FFmpeg** for converting MP4 videos to WAV audio. Install it via the following:
#### On MacOS (using Homebrew):
```bash
brew install ffmpeg
```
#### On Ubuntu:
```bash
sudo apt-get install ffmpeg
```
#### On Windows:
Download FFmpeg from [FFmpeg.org](https://ffmpeg.org/download.html) and add it to your system path.
---
## π Running the Project
Start the Flask server with the following command:
```bash
python app.py
```
If everything is set up correctly, you should see:
```plaintext
* Running on http://127.0.0.1:5000/
```
---
## π‘ API Endpoints
### β
Health Check
**Endpoint:** `GET /`
Check if the API is running.
```bash
curl http://127.0.0.1:5000/
```
**Response:**
```json
{
"status": "success",
"message": "API is running successfully!"
}
```
### π² Recipe Extraction
**Endpoint:** `POST /process-video`
#### Request Body:
Send a JSON payload with a video URL:
```json
{
"videoUrl": "<URL-of-the-cooking-video>"
}
```
#### Example Using `curl`:
```bash
curl -X POST http://127.0.0.1:5000/process-video \
-H "Content-Type: application/json" \
-d '{"videoUrl": "https://example.com/video.mp4"}'
```
#### Sample Response:
```json
{
"**1. Recipe Name:**": "Beef Wellington",
"**2. Ingredients List:**": "* Fillet of beef\n* Olive oil\n* Salt\n* Pepper",
"**3. Steps for Preparation:**": "1. Sear the beef fillet\n2. Brush with mustard",
"**4. Cooking Techniques Used:**": "* Searing\n* Wrapping",
"**5. Equipment Needed:**": "* Hot pan\n* Blender",
"**6. Nutritional Information:**": "High in protein and fat",
"**7. Serving size:**": "2-4 people",
"**8. Special Notes or Variations:**": "Use horseradish instead of mustard",
"**9. Festive or Thematic Relevance:**": "Christmas alternative to roast turkey"
}
```
---
## π οΈ Key Features
- **Deepgram API** for accurate audio transcription.
- **Tesseract OCR** for extracting text from video frames.
- **Gemini API** for generating structured recipe information.
- **FFmpeg** for seamless MP4-to-WAV conversion.
- Supports both audio and video analysis for enhanced accuracy. π―
---
## π§ͺ Testing
Use tools like **Postman** or **curl** to test the API endpoints.
---
## π€ Contributions
Contributions are welcome! Feel free to submit a pull request or open an issue for any enhancements or bug fixes.
---
## π License
This project is licensed under the MIT License.
---
### π Happy Coding and Bon AppΓ©tit! π¨βπ³π©βπ³
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|