Spaces:
Running
Running
import os | |
import whisper | |
import requests | |
from flask import Flask, request, jsonify, render_template | |
from dotenv import load_dotenv | |
from deepgram import DeepgramClient, PrerecordedOptions | |
import tempfile | |
import json | |
import subprocess | |
from youtube_transcript_api import YouTubeTranscriptApi | |
import warnings | |
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead") | |
app = Flask(__name__) | |
print("APP IS RUNNING, ANIKET") | |
# Load the .env file | |
load_dotenv() | |
print("ENV LOADED, ANIKET") | |
# Fetch the API key from the .env file | |
API_KEY = os.getenv("FIRST_API_KEY") | |
DEEPGRAM_API_KEY = os.getenv("SECOND_API_KEY") | |
# Ensure the API key is loaded correctly | |
if not API_KEY: | |
raise ValueError("API Key not found. Make sure it is set in the .env file.") | |
if not DEEPGRAM_API_KEY: | |
raise ValueError("DEEPGRAM_API_KEY not found. Make sure it is set in the .env file.") | |
GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent" | |
GEMINI_API_KEY = API_KEY | |
def health_check(): | |
return jsonify({"status": "success", "message": "API is running successfully!"}), 200 | |
def query_gemini_api(transcription): | |
""" | |
Send transcription text to Gemini API and fetch structured recipe information synchronously. | |
""" | |
try: | |
# Define the structured prompt | |
prompt = ( | |
"Analyze the provided cooking video transcription and extract the following structured information:\n" | |
"1. Recipe Name: Identify the name of the dish being prepared.\n" | |
"2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n" | |
"3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n" | |
"4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n" | |
"5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n" | |
"6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n" | |
"7. Serving size: In count of people or portion size.\n" | |
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n" | |
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n" | |
f"Text: {transcription}\n" | |
) | |
# Prepare the payload and headers | |
payload = { | |
"contents": [ | |
{ | |
"parts": [ | |
{"text": prompt} | |
] | |
} | |
] | |
} | |
headers = {"Content-Type": "application/json"} | |
# Send request to Gemini API synchronously | |
response = requests.post( | |
f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}", | |
json=payload, | |
headers=headers, | |
) | |
# Raise error if response code is not 200 | |
response.raise_for_status() | |
data = response.json() | |
return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found") | |
except requests.exceptions.RequestException as e: | |
print(f"Error querying Gemini API: {e}") | |
return {"error": str(e)} | |
if __name__ == '__main__': | |
app.run(debug=True) | |