Dish-Decode-2 / app.py
GoodML's picture
Update app.py
985ead6 verified
raw
history blame
21.4 kB
# import os
# import requests
# import cv2
# import re
# from flask import Flask, request, jsonify, render_template
# from deepgram import DeepgramClient, PrerecordedOptions
# from dotenv import load_dotenv
# import tempfile
# import json
# import subprocess
# import warnings
# warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
# app = Flask(__name__)
# print("APP IS RUNNING, ANIKET")
# # Load the .env file
# load_dotenv()
# print("ENV LOADED, ANIKET")
# # Fetch the API key from the .env file
# API_KEY = os.getenv("FIRST_API_KEY")
# DEEPGRAM_API_KEY = os.getenv("SECOND_API_KEY")
# # Ensure the API key is loaded correctly
# if not API_KEY:
# raise ValueError("API Key not found. Make sure it is set in the .env file.")
# if not DEEPGRAM_API_KEY:
# raise ValueError("DEEPGRAM_API_KEY not found. Make sure it is set in the .env file.")
# GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
# GEMINI_API_KEY = API_KEY
# @app.route("/", methods=["GET"])
# def health_check():
# return jsonify({"status": "success", "message": "API is running successfully!"}), 200
# def transcribe_audio(wav_file_path):
# """
# Transcribe audio from a video file using Deepgram API synchronously.
# Args:
# wav_file_path (str): Path to save the converted WAV file.
# Returns:
# dict: A dictionary containing status, transcript, or error message.
# """
# print("Entered the transcribe_audio function")
# try:
# # Initialize Deepgram client
# deepgram = DeepgramClient(DEEPGRAM_API_KEY)
# # Open the converted WAV file
# with open(wav_file_path, 'rb') as buffer_data:
# payload = {'buffer': buffer_data}
# # Configure transcription options
# options = PrerecordedOptions(
# smart_format=True, model="nova-2", language="en-US"
# )
# # Transcribe the audio
# response = deepgram.listen.prerecorded.v('1').transcribe_file(payload, options)
# # Check if the response is valid
# if response:
# # print("Request successful! Processing response.")
# # Convert response to JSON string
# try:
# data_str = response.to_json(indent=4)
# except AttributeError as e:
# return {"status": "error", "message": f"Error converting response to JSON: {e}"}
# # Parse the JSON string to a Python dictionary
# try:
# data = json.loads(data_str)
# except json.JSONDecodeError as e:
# return {"status": "error", "message": f"Error parsing JSON string: {e}"}
# # Extract the transcript
# try:
# transcript = data["results"]["channels"][0]["alternatives"][0]["transcript"]
# except KeyError as e:
# return {"status": "error", "message": f"Error extracting transcript: {e}"}
# print(f"Transcript obtained: {transcript}")
# # Step: Save the transcript to a text file
# transcript_file_path = "transcript_from_transcribe_audio.txt"
# with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
# transcript_file.write(transcript)
# # print(f"Transcript saved to file: {transcript_file_path}")
# return transcript
# else:
# return {"status": "error", "message": "Invalid response from Deepgram."}
# except FileNotFoundError:
# return {"status": "error", "message": f"Video file not found: {wav_file_path}"}
# except Exception as e:
# return {"status": "error", "message": f"Unexpected error: {e}"}
# finally:
# # Clean up the temporary WAV file
# if os.path.exists(wav_file_path):
# os.remove(wav_file_path)
# print(f"Temporary WAV file deleted: {wav_file_path}")
# def download_video(url, temp_video_path):
# """Download video (MP4 format) from the given URL and save it to temp_video_path."""
# response = requests.get(url, stream=True)
# if response.status_code == 200:
# with open(temp_video_path, 'wb') as f:
# for chunk in response.iter_content(chunk_size=1024):
# f.write(chunk)
# print(f"Audio downloaded successfully to {temp_video_path}")
# else:
# raise Exception(f"Failed to download audio, status code: {response.status_code}")
# def preprocess_frame(frame):
# """Preprocess the frame for better OCR accuracy."""
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# denoised = cv2.medianBlur(gray, 3)
# _, thresh = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# return thresh
# def clean_ocr_text(text):
# """Clean the OCR output by removing noise and unwanted characters."""
# cleaned_text = re.sub(r'[^A-Za-z0-9\s,.!?-]', '', text)
# cleaned_text = '\n'.join([line.strip() for line in cleaned_text.splitlines() if len(line.strip()) > 2])
# return cleaned_text
# def get_information_from_video_using_OCR(video_path, interval=1):
# """Extract text from video frames using OCR and return the combined text content."""
# cap = cv2.VideoCapture(video_path)
# fps = int(cap.get(cv2.CAP_PROP_FPS))
# frame_interval = interval * fps
# frame_count = 0
# extracted_text = ""
# print("Starting text extraction from video...")
# while cap.isOpened():
# ret, frame = cap.read()
# if not ret:
# break
# if frame_count % frame_interval == 0:
# preprocessed_frame = preprocess_frame(frame)
# text = pytesseract.image_to_string(preprocessed_frame, lang='eng', config='--psm 6 --oem 3')
# cleaned_text = clean_ocr_text(text)
# if cleaned_text:
# extracted_text += cleaned_text + "\n\n"
# print(f"Text found at frame {frame_count}: {cleaned_text[:50]}...")
# frame_count += 1
# cap.release()
# print("Text extraction completed.")
# return extracted_text
# @app.route('/process-video', methods=['POST'])
# def process_video():
# if 'videoUrl' not in request.json:
# return jsonify({"error": "No video URL provided"}), 400
# video_url = request.json['videoUrl']
# temp_video_path = None
# try:
# # Step 1: Download the WAV file from the provided URL
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
# temp_video_path = temp_video_file.name
# download_video(video_url, temp_video_path)
# interval = 1
# # Step 2: get the information from the downloaded MP4 file synchronously
# video_info = get_information_from_video_using_OCR(temp_video_path, interval)
# if not video_info:
# video_info = ""
# # Step 2: Convert the MP4 to WAV
# with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
# temp_wav_path = temp_wav_file.name
# convert_mp4_to_wav(temp_video_path, temp_wav_path)
# audio_info = transcribe_audio(temp_wav_path)
# # If no transcription present, use an empty string
# if not audio_info:
# audio_info = ""
# # Step 3: Generate structured recipe information using Gemini API synchronously
# structured_data = query_gemini_api(video_info, audio_info)
# return jsonify(structured_data)
# except Exception as e:
# return jsonify({"error": str(e)}), 500
# finally:
# # Clean up temporary audio file
# if temp_video_path and os.path.exists(temp_video_path):
# os.remove(temp_video_path)
# print(f"Temporary audio file deleted: {temp_video_path}")
# def query_gemini_api(video_transcription, audio_transcription):
# """
# Send transcription text to Gemini API and fetch structured recipe information synchronously.
# """
# try:
# # Define the structured prompt
# prompt = (
# "Analyze the provided cooking video and audio transcription combined and based on the combined information extract the following structured information:\n"
# "1. Recipe Name: Identify the name of the dish being prepared.\n"
# "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
# "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
# "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
# "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
# "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
# "7. Serving size: In count of people or portion size.\n"
# "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
# "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
# "Also, make sure not to provide anything else or any other information or warning or text apart from the above things mentioned."
# f"Text: {audio_transcription}\n"
# f"Text: {video_transcription}\n"
# )
# # Prepare the payload and headers
# payload = {
# "contents": [
# {
# "parts": [
# {"text": prompt}
# ]
# }
# ]
# }
# headers = {"Content-Type": "application/json"}
# # Send request to Gemini API synchronously
# response = requests.post(
# f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
# json=payload,
# headers=headers,
# )
# # Raise error if response code is not 200
# response.raise_for_status()
# data = response.json()
# return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
# except requests.exceptions.RequestException as e:
# print(f"Error querying Gemini API: {e}")
# return {"error": str(e)}
# if __name__ == '__main__':
# app.run(debug=True)
import os
import requests
import cv2
import re
import pytesseract
from flask import Flask, request, jsonify, render_template
from deepgram import DeepgramClient, PrerecordedOptions
from dotenv import load_dotenv
import tempfile
import json
import subprocess
import warnings
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
app = Flask(__name__)
print("APP IS RUNNING, ANIKET")
# Load the .env file
load_dotenv()
print("ENV LOADED, ANIKET")
# Fetch the API key from the .env file
API_KEY = os.getenv("FIRST_API_KEY")
DEEPGRAM_API_KEY = os.getenv("SECOND_API_KEY")
# Ensure the API key is loaded correctly
if not API_KEY:
raise ValueError("API Key not found. Make sure it is set in the .env file.")
if not DEEPGRAM_API_KEY:
raise ValueError("DEEPGRAM_API_KEY not found. Make sure it is set in the .env file.")
GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
GEMINI_API_KEY = API_KEY
@app.route("/", methods=["GET"])
def health_check():
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
def transcribe_audio(wav_file_path):
"""
Transcribe audio from a video file using Deepgram API synchronously.
Args:
wav_file_path (str): Path to save the converted WAV file.
Returns:
dict: A dictionary containing status, transcript, or error message.
"""
print("Entered the transcribe_audio function")
try:
# Initialize Deepgram client
deepgram = DeepgramClient(DEEPGRAM_API_KEY)
# Open the converted WAV file
with open(wav_file_path, 'rb') as buffer_data:
payload = {'buffer': buffer_data}
# Configure transcription options
options = PrerecordedOptions(
smart_format=True, model="nova-2", language="en-US"
)
# Transcribe the audio
response = deepgram.listen.prerecorded.v('1').transcribe_file(payload, options)
# Check if the response is valid
if response:
try:
data_str = response.to_json(indent=4)
except AttributeError as e:
return {"status": "error", "message": f"Error converting response to JSON: {e}"}
# Parse the JSON string to a Python dictionary
try:
data = json.loads(data_str)
except json.JSONDecodeError as e:
return {"status": "error", "message": f"Error parsing JSON string: {e}"}
# Extract the transcript
try:
transcript = data["results"]["channels"][0]["alternatives"][0]["transcript"]
except KeyError as e:
return {"status": "error", "message": f"Error extracting transcript: {e}"}
print(f"Transcript obtained: {transcript}")
# Save the transcript to a text file
transcript_file_path = "transcript_from_transcribe_audio.txt"
with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
transcript_file.write(transcript)
return transcript
else:
return {"status": "error", "message": "Invalid response from Deepgram."}
except FileNotFoundError:
return {"status": "error", "message": f"Video file not found: {wav_file_path}"}
except Exception as e:
return {"status": "error", "message": f"Unexpected error: {e}"}
finally:
# Clean up the temporary WAV file
if os.path.exists(wav_file_path):
os.remove(wav_file_path)
print(f"Temporary WAV file deleted: {wav_file_path}")
def download_video(url, temp_video_path):
"""Download video (MP4 format) from the given URL and save it to temp_video_path."""
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(temp_video_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
print(f"Audio downloaded successfully to {temp_video_path}")
else:
raise Exception(f"Failed to download audio, status code: {response.status_code}")
def preprocess_frame(frame):
"""Preprocess the frame for better OCR accuracy."""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
denoised = cv2.medianBlur(gray, 3)
_, thresh = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
return thresh
def clean_ocr_text(text):
"""Clean the OCR output by removing noise and unwanted characters."""
cleaned_text = re.sub(r'[^A-Za-z0-9\s,.!?-]', '', text)
cleaned_text = '\n'.join([line.strip() for line in cleaned_text.splitlines() if len(line.strip()) > 2])
return cleaned_text
def get_information_from_video_using_OCR(video_path, interval=1):
"""Extract text from video frames using OCR and return the combined text content."""
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_interval = interval * fps
frame_count = 0
extracted_text = ""
print("Starting text extraction from video...")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
preprocessed_frame = preprocess_frame(frame)
text = pytesseract.image_to_string(preprocessed_frame, lang='eng', config='--psm 6 --oem 3')
cleaned_text = clean_ocr_text(text)
if cleaned_text:
extracted_text += cleaned_text + "\n\n"
print(f"Text found at frame {frame_count}: {cleaned_text[:50]}...")
frame_count += 1
cap.release()
print("Text extraction completed.")
return extracted_text
def convert_mp4_to_wav(mp4_path, wav_path):
"""Convert an MP4 file to a WAV file."""
command = f"ffmpeg -i {mp4_path} -vn -acodec pcm_s16le -ar 44100 -ac 2 {wav_path}"
subprocess.run(command, shell=True, check=True)
print(f"MP4 file converted to WAV: {wav_path}")
@app.route('/process-video', methods=['POST'])
def process_video():
if 'videoUrl' not in request.json:
return jsonify({"error": "No video URL provided"}), 400
video_url = request.json['videoUrl']
temp_video_path = None
try:
# Step 1: Download the MP4 file from the provided URL
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
temp_video_path = temp_video_file.name
download_video(video_url, temp_video_path)
# Step 2: Get the information from the downloaded MP4 file synchronously
video_info = get_information_from_video_using_OCR(temp_video_path, interval=1)
if not video_info:
video_info = ""
# Step 3: Convert the MP4 to WAV
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
temp_wav_path = temp_wav_file.name
convert_mp4_to_wav(temp_video_path, temp_wav_path)
# Step 4: Transcribe the audio
audio_info = transcribe_audio(temp_wav_path)
# If no transcription is present, use an empty string
if not audio_info:
audio_info = ""
# Step 5: Generate structured recipe information using Gemini API synchronously
structured_data = query_gemini_api(video_info, audio_info)
return jsonify(structured_data)
except Exception as e:
return jsonify({"error": str(e)}), 500
finally:
# Clean up temporary video file
if temp_video_path and os.path.exists(temp_video_path):
os.remove(temp_video_path)
print(f"Temporary video file deleted: {temp_video_path}")
def query_gemini_api(video_transcription, audio_transcription):
"""
Send transcription text to Gemini API and fetch structured recipe information synchronously.
"""
try:
# Define the structured prompt
prompt = (
"Analyze the provided cooking video and audio transcription combined and based on the combined information extract the following structured information:\n"
"1. Recipe Name: Identify the name of the dish being prepared.\n"
"2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
"3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
"4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
"5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
"6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
"7. Serving size: In count of people or portion size.\n"
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
f"Text: {audio_transcription}\n"
f"Text: {video_transcription}\n"
)
# Prepare the payload and headers
payload = {
"contents": [
{
"parts": [
{"text": prompt}
]
}
]
}
headers = {"Content-Type": "application/json"}
# Send request to Gemini API synchronously
response = requests.post(
f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
json=payload,
headers=headers,
)
# Raise error if response code is not 200
response.raise_for_status()
data = response.json()
return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
except requests.exceptions.RequestException as e:
print(f"Error querying Gemini API: {e}")
return {"error": str(e)}
if __name__ == '__main__':
app.run(debug=True)