GoodML commited on
Commit
dd04276
·
verified ·
1 Parent(s): a42b144

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -5
app.py CHANGED
@@ -1,13 +1,10 @@
1
  import os
2
- import whisper
3
  import requests
4
  from flask import Flask, request, jsonify, render_template
5
  from dotenv import load_dotenv
6
- from deepgram import DeepgramClient, PrerecordedOptions
7
  import tempfile
8
  import json
9
  import subprocess
10
- from youtube_transcript_api import YouTubeTranscriptApi
11
 
12
 
13
  import warnings
@@ -53,6 +50,50 @@ def download_audio(url, temp_video_path):
53
  raise Exception(f"Failed to download audio, status code: {response.status_code}")
54
 
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  @app.route('/process-video', methods=['POST'])
58
  def process_video():
@@ -67,9 +108,9 @@ def process_video():
67
  with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
68
  temp_video_path = temp_video_file.name
69
  download_audio(video_url, temp_video_path)
70
-
71
  # Step 2: get the information from the downloaded MP4 file synchronously
72
- video_info = get_information_from_video_using_OCR(temp_video_path)
73
 
74
  if not video_info:
75
  return jsonify({"error": "video information extraction failed"}), 500
 
1
  import os
 
2
  import requests
3
  from flask import Flask, request, jsonify, render_template
4
  from dotenv import load_dotenv
 
5
  import tempfile
6
  import json
7
  import subprocess
 
8
 
9
 
10
  import warnings
 
50
  raise Exception(f"Failed to download audio, status code: {response.status_code}")
51
 
52
 
53
+ def preprocess_frame(frame):
54
+ """Preprocess the frame for better OCR accuracy."""
55
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
56
+ denoised = cv2.medianBlur(gray, 3)
57
+ _, thresh = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
58
+ return thresh
59
+
60
+ def clean_ocr_text(text):
61
+ """Clean the OCR output by removing noise and unwanted characters."""
62
+ cleaned_text = re.sub(r'[^A-Za-z0-9\s,.!?-]', '', text)
63
+ cleaned_text = '\n'.join([line.strip() for line in cleaned_text.splitlines() if len(line.strip()) > 2])
64
+ return cleaned_text
65
+
66
+ def get_information_from_video_using_OCR(video_path, interval=1):
67
+ """Extract text from video frames using OCR and return the combined text content."""
68
+ cap = cv2.VideoCapture(video_path)
69
+ fps = int(cap.get(cv2.CAP_PROP_FPS))
70
+ frame_interval = interval * fps
71
+ frame_count = 0
72
+ extracted_text = ""
73
+
74
+ print("Starting text extraction from video...")
75
+
76
+ while cap.isOpened():
77
+ ret, frame = cap.read()
78
+ if not ret:
79
+ break
80
+
81
+ if frame_count % frame_interval == 0:
82
+ preprocessed_frame = preprocess_frame(frame)
83
+ text = pytesseract.image_to_string(preprocessed_frame, lang='eng', config='--psm 6 --oem 3')
84
+ cleaned_text = clean_ocr_text(text)
85
+ if cleaned_text:
86
+ extracted_text += cleaned_text + "\n\n"
87
+ print(f"Text found at frame {frame_count}: {cleaned_text[:50]}...")
88
+
89
+ frame_count += 1
90
+
91
+ cap.release()
92
+ print("Text extraction completed.")
93
+ return extracted_text
94
+
95
+
96
+
97
 
98
  @app.route('/process-video', methods=['POST'])
99
  def process_video():
 
108
  with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
109
  temp_video_path = temp_video_file.name
110
  download_audio(video_url, temp_video_path)
111
+ interval = 1
112
  # Step 2: get the information from the downloaded MP4 file synchronously
113
+ video_info = get_information_from_video_using_OCR(temp_video_path, interval)
114
 
115
  if not video_info:
116
  return jsonify({"error": "video information extraction failed"}), 500