Spaces:
Running
Running
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
st.set_page_config(page_title="News Prediction", page_icon=":earth_africa:") | |
tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification") | |
model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification") | |
def predict_fake(title,text): | |
input_str = "<title>" + title + "<content>" + text + "<end>" | |
input_ids = tokenizer.encode_plus(input_str, max_length=512, padding="max_length", truncation=True, return_tensors="pt") | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model.to(device) | |
with torch.no_grad(): | |
output = model(input_ids["input_ids"].to(device), attention_mask=input_ids["attention_mask"].to(device)) | |
return dict(zip(["Fake","Real"], [x.item() for x in list(torch.nn.Softmax()(output.logits)[0])] )) | |
# Load the model | |
# news_model = pickle.load(open("fake_news_predictor_model.pkl", "rb")) | |
# vectorizer = pickle.load(open("fakeNews_tfidf_vectorizer.pkl", "rb")) | |
# Function for preprocessing input text | |
# def preProcessing(author, title, text): | |
# input_corpus = author +" " + title + " " + text | |
# input_corpus = re.sub('[^a-zA-Z]', ' ', input_corpus) | |
# input_corpus = input_corpus.lower() | |
# input_corpus = input_corpus.split() | |
# ps = PorterStemmer() | |
# input_corpus = [ps.stem(word) for word in input_corpus if not word in set(stopwords.words('english'))] | |
# input_corpus = ' '.join(input_corpus) | |
# return input_corpus | |
# # Function to convert text into numerical vector using TF-IDF | |
# def convertIntoVector(X): | |
# # Now converting the textual data into numerical vectors using the initialized TF-IDF vectorizer | |
# X = vectorizer.transform(X) | |
# return X | |
def main(): | |
# TO remove streamlit branding and other running animation | |
hide_st_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_st_style, unsafe_allow_html=True) | |
# Spinners | |
bar = st.progress(0) | |
for i in range(101): | |
bar.progress(i) | |
# time.sleep(0.02) # Adjust the sleep time for the desired speed | |
# st.balloons() | |
# Web content starts | |
# Navbar starts | |
# Create the Streamlit app | |
col1, col2 = st.columns([1, 10]) | |
with col1: | |
st.header(" :globe_with_meridians:") | |
with col2: | |
st.header("Fake News Prediction App") | |
# Initialize NLTK resources | |
# nltk.download('stopwords') | |
# Create sidebar section for app description and links | |
st.sidebar.title("Find the fake :mag_right:") | |
st.sidebar.write("Welcome the NLP based fake news detector :male-detective:") | |
st.sidebar.write(""" | |
This web app predicts whether a given news article is real or fake using a logistic regression model trained on a dataset containing 20,000 sample news articles with an impressive accuracy of 96%. The app employs TF-IDF vectorization and NLTK library preprocessing techniques, including lowercase conversion, regular expressions, tokenization, stemming, and merging textual data. | |
Skills Enhanced: | |
π¬ NLP | |
π» ML | |
π Python | |
π Data Analysis | |
π€ Transformers | |
π€ Hugging face | |
\nSteps: | |
1. Data Acquisition: Obtained a dataset of 20,000 news articles from various sources.\n | |
2. Data Preprocessing: Handled missing values, tokenization, lowercase conversion, stemming, and unified text data.\n | |
3. Data Visualization: Used Matplotlib for heatmaps, correlation, and confusion matrices.\n | |
4. Model Creation: Trained a logistic regression model with TF-IDF vectorization for classification.\n | |
5. Evaluation: Evaluated model performance with accuracy analysis.\n | |
By leveraging NLP and ML, this app helps identify false information in news articles, aiding in the fight against misinformation and promoting media literacy. | |
**Credits** π\n | |
Coder: Aniket Panchal | |
GitHub: https://github.com/Aniket2021448 | |
**Contact** π§\n | |
For any inquiries or feedback, please contact [email protected] | |
""") | |
st.sidebar.write("Feel free to check out my other apps:") | |
with st.sidebar.form("app_selection_form"): | |
st.write("Feel free to explore my other apps :eyes:") | |
app_links = { | |
"Movie-mind": "https://movie-mind.streamlit.app/", | |
"Comment-Feel": "https://huggingface.co/spaces/GoodML/Comment-Feel" | |
} | |
selected_app = st.selectbox("Choose an App", list(app_links.keys())) | |
submitted_button = st.form_submit_button("Go to App") | |
# Handle form submission | |
if submitted_button: | |
selected_app_url = app_links.get(selected_app) | |
if selected_app_url: | |
st.sidebar.success("Redirected successfully!") | |
st.markdown(f'<meta http-equiv="refresh" content="0;URL={selected_app_url}">', unsafe_allow_html=True) | |
# Dropdown menu for other app links | |
st.sidebar.write("In case the apps are down, because of less usage") | |
st.sidebar.write("Kindly reach out to me @ [email protected]") | |
# Create the form | |
with st.form("news_form"): | |
st.subheader("Enter News Details") | |
# author = st.text_input("Author Name") | |
title = st.text_input("Title") | |
text = st.text_area("Text") | |
submit_button = st.form_submit_button("Submit") | |
# Process form submission and make prediction | |
if submit_button: | |
# input_text = preProcessing(title, text) | |
# numerical_data = convertIntoVector([input_text]) | |
prediction = predict_fake(title, text) | |
# prediction = news_model.predict(numerical_data) | |
st.subheader(":loudspeaker:Prediction:") | |
# st.write("Prediction: ", prediction) | |
# st.write("Prediction[0]: ", prediction[0]) | |
if prediction == "TRUE": | |
st.write("This news is predicted to be **real**.:muscle:") | |
else: | |
st.write("This news is predicted to be **fake**.:shit:") | |
if __name__ == "__main__": | |
main() | |