File size: 7,451 Bytes
e444da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225



import time
import dotenv
import streamlit as st
from langchain_core.messages import HumanMessage, AIMessage
from dotenv import load_dotenv


from langchain_core.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Pinecone


import pinecone
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.prompts import PromptTemplate
from langchain_community.llms import CTransformers



load_dotenv()
st.set_page_config(page_title= "Medical chatbot", page_icon=":bot:")

if "chat_history" not in st.session_state:
    st.session_state.chat_history = []

PINECONE_API_KEY = "1bae0d8e-019e-4e87-8080-ecf523e5f25f"
def get_response(user_query):
    # Initilize the prompt
    # create prompt template, integrate chatHistory component as well
    prompt_template = """
        Use the following pieces of information to answer the user's question.
        If you don't know the answer, just say that you don't know, don't try to make up an answer.

        Context: {context}
        Question: {question}

        Only return the helpful answer below nothing else.
        Helpful Answer: 
        """
    
    PROMPT = PromptTemplate(template = prompt_template, input_variables=["context", "question"])
    chain_type_kwargs = {"prompt":PROMPT}

    llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML", model_type="llama", config={'max_new_tokens': 1024, 'temperature': 1})
    
    index_name = "medical-chatbot"
    index=pinecone.Index(api_key=PINECONE_API_KEY, host="https://medical-chatbot-pv4ded8.svc.aped-4627-b74a.pinecone.io")

    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    # Create Pinecone retriever
    vector_store = Pinecone(index, embeddings, text_key="text")

    
    qa = RetrievalQA.from_chain_type(llm, chain_type="stuff",retriever = vector_store.as_retriever(search_kwargs={"k": 2}), chain_type_kwargs=chain_type_kwargs)
    answer = qa.invoke({"query":user_query, "context": st.session_state.chat_history})

    return answer
    # answer = vector_store.similarity_search(user_query, k=3)
    # return answer.stream().get("answer")

# Function to simulate typing effect
def type_effect(text):
    for char in text:
        st.write(char)
        time.sleep(0.05)
    st.write("")

    
st.title("Medical chatbot")

st.write("Welcome to the medical chatbot. Please enter your symptoms below and I will try to help you.")

if "chat_history" in st.session_state:
    for message in st.session_state.chat_history:
        if "user" in message:
            with st.chat_message("Human"):
                st.markdown(message["user"])
        elif "bot" in message:
            with st.chat_message("AI"):
                st.markdown(message["bot"])

user_query = st.chat_input("Enter your symptoms here")
if user_query is not None and user_query != "":


    with st.chat_message("Human"):
        st.markdown(user_query)
        st.session_state.chat_history.append({"user": user_query})

    with st.chat_message("AI"):
        # =""
        # for message in st.session_state.chat_history:
        #     if "user" in message:
        #        += f"User: {message['user']}\n"
        #     elif "bot" in message:
        #        += f"Bot: {message['bot']}\n"

        ai_response = get_response(user_query)
        # st.write(type(ai_response))
        result = ai_response["result"]
        # type_effect(result)
        st.markdown(result)

        # Get the response from backend and present it here
        st.session_state.chat_history.append({"bot": result})



# import os
# import time
# import dotenv
# import streamlit as st
# from dotenv import load_dotenv

# from langchain import PromptTemplate
# from langchain.chains import RetrievalQA
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.vectorstores import Pinecone

# import pinecone
# from langchain.llms import CTransformers

# # Load environment variables
# load_dotenv()

# # Initialize Streamlit page config
# st.set_page_config(page_title="Medical Chatbot", page_icon=":bot:")

# # Initialize chat history in session state
# if "chat_history" not in st.session_state:
#     st.session_state.chat_history = []

# PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
# HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")

# # Cache models and vector store initialization
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# @st.cache_resource
# def initialize_models():
#     # Load language model

#     llm = CTransformers(model="model/llama-2-7b-chat.ggmlv3.q4_0.bin", model_type="llama", config={'max_new_tokens': 1024, 'temperature': 1})


#     # Initialize Pinecone index
#     index = pinecone.Index(api_key=PINECONE_API_KEY, host="https://medical-chatbot-pv4ded8.svc.aped-4627-b74a.pinecone.io")

#     # Initialize embeddings

#     # Create Pinecone retriever
#     vector_store = Pinecone(index, embeddings, text_key="text")

#     return llm, vector_store

# llm, vector_store = initialize_models()

# # Define prompt template
# prompt_template = """
#     Use the following pieces of information to answer the user's question.
#     If you don't know the answer, just say that I don't know, don't try to make up an answer.

#     Context: {context}
#     Question: {question}

#     Only return the helpful answer below nothing else.
#     Helpful Answer: 
#     """
# PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])

# # Cache QA chain initialization
# @st.cache_resource
# def _initialize_qa(_llm, _vector_store):
#     return RetrievalQA.from_chain_type(
#         _llm,
#         chain_type="stuff",
#         retriever=_vector_store.as_retriever(search_kwargs={"k": 2}),
#         chain_type_kwargs={"prompt": PROMPT}
#     )

# qa = _initialize_qa(llm, vector_store)

# def get_response(user_query):
#     # chat_context = "\n".join([f"User: {msg['user']}" if 'user' in msg else f"Bot: {msg['bot']}" for msg in st.session_state.chat_history])
#     answer = qa.invoke({"query": user_query, "context": st.session_state.chat_history})
#     return answer

# # Function to simulate typing effect
# # def type_effect(text):
# #     for char in text:
# #         st.write(char, end="")
# #         time.sleep(0.05)
# #     st.write("")

# # Streamlit UI
# st.title("Medical Chatbot")
# st.write("Welcome to the medical chatbot. Please enter your symptoms below and I will try to help you.")

# # Display chat history
# for message in st.session_state.chat_history:
#     if "user" in message:
#         with st.chat_message("Human"):
#             st.markdown(message["user"])
#     elif "bot" in message:
#         with st.chat_message("AI"):
#             st.markdown(message["bot"])

# # Chat input and response handling
# user_query = st.chat_input("Enter your symptoms here")
# if user_query:
#     with st.chat_message("Human"):
#         st.markdown(user_query)
#         st.session_state.chat_history.append({"user": user_query})

#     with st.chat_message("AI"):
#         ai_response = get_response(user_query)
#         result = ai_response["result"]
#         st.markdown(result)
#         st.session_state.chat_history.append({"bot": result})