Spaces:
Running
Running
INtroduced sleep times
Browse files
app.py
CHANGED
@@ -1,24 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import subprocess
|
3 |
import whisper
|
4 |
import requests
|
5 |
import tempfile
|
6 |
import warnings
|
7 |
import threading
|
8 |
-
|
9 |
-
|
10 |
from dotenv import load_dotenv
|
11 |
-
import requests
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
|
16 |
warnings.filterwarnings("ignore", category=UserWarning, module="whisper")
|
17 |
|
18 |
-
|
19 |
app = Flask(__name__)
|
20 |
|
21 |
-
|
22 |
# Gemini API settings
|
23 |
load_dotenv()
|
24 |
API_KEY = os.getenv("FIRST_API_KEY")
|
@@ -41,7 +189,7 @@ def health_check():
|
|
41 |
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
|
42 |
|
43 |
|
44 |
-
def process_video_in_background(video_file, temp_video_file_name):
|
45 |
"""
|
46 |
This function is executed in a separate thread to handle the long-running
|
47 |
video processing tasks such as transcription and querying the Gemini API.
|
@@ -50,16 +198,16 @@ def process_video_in_background(video_file, temp_video_file_name):
|
|
50 |
transcription = transcribe_audio(temp_video_file_name)
|
51 |
|
52 |
if not transcription:
|
53 |
-
|
54 |
return
|
55 |
|
56 |
structured_data = query_gemini_api(transcription)
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
|
61 |
except Exception as e:
|
62 |
-
|
63 |
|
64 |
finally:
|
65 |
# Clean up temporary files
|
@@ -73,6 +221,7 @@ def process_video():
|
|
73 |
return jsonify({"error": "No video file provided"}), 400
|
74 |
|
75 |
video_file = request.files['video']
|
|
|
76 |
|
77 |
try:
|
78 |
# Save video to a temporary file
|
@@ -81,9 +230,18 @@ def process_video():
|
|
81 |
print(f"Video file saved: {temp_video_file.name}")
|
82 |
|
83 |
# Start the video processing in a background thread
|
84 |
-
threading.Thread(target=process_video_in_background, args=(video_file, temp_video_file.name)).start()
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
88 |
except Exception as e:
|
89 |
return jsonify({"error": str(e)}), 500
|
@@ -137,9 +295,21 @@ def query_gemini_api(transcription):
|
|
137 |
)
|
138 |
response.raise_for_status()
|
139 |
|
140 |
-
#
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
except requests.exceptions.RequestException as e:
|
145 |
print(f"Error querying Gemini API: {e}")
|
@@ -147,4 +317,4 @@ def query_gemini_api(transcription):
|
|
147 |
|
148 |
|
149 |
if __name__ == '__main__':
|
150 |
-
app.run(debug=True)
|
|
|
1 |
+
# import os
|
2 |
+
# import subprocess
|
3 |
+
# import whisper
|
4 |
+
# import requests
|
5 |
+
# import tempfile
|
6 |
+
# import warnings
|
7 |
+
# import threading
|
8 |
+
# from flask import Flask, request, jsonify, send_file, render_template
|
9 |
+
|
10 |
+
# from dotenv import load_dotenv
|
11 |
+
# import requests
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
# warnings.filterwarnings("ignore", category=UserWarning, module="whisper")
|
17 |
+
|
18 |
+
|
19 |
+
# app = Flask(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
# # Gemini API settings
|
23 |
+
# load_dotenv()
|
24 |
+
# API_KEY = os.getenv("FIRST_API_KEY")
|
25 |
+
|
26 |
+
# # Ensure the API key is loaded correctly
|
27 |
+
# if not API_KEY:
|
28 |
+
# raise ValueError("API Key not found. Make sure it is set in the .env file.")
|
29 |
+
|
30 |
+
# GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
|
31 |
+
# GEMINI_API_KEY = API_KEY
|
32 |
+
|
33 |
+
# # Load Whisper AI model at startup
|
34 |
+
# print("Loading Whisper AI model...")
|
35 |
+
# whisper_model = whisper.load_model("base")
|
36 |
+
# print("Whisper AI model loaded successfully.")
|
37 |
+
|
38 |
+
# # Define the "/" endpoint for health check
|
39 |
+
# @app.route("/", methods=["GET"])
|
40 |
+
# def health_check():
|
41 |
+
# return jsonify({"status": "success", "message": "API is running successfully!"}), 200
|
42 |
+
|
43 |
+
|
44 |
+
# def process_video_in_background(video_file, temp_video_file_name):
|
45 |
+
# """
|
46 |
+
# This function is executed in a separate thread to handle the long-running
|
47 |
+
# video processing tasks such as transcription and querying the Gemini API.
|
48 |
+
# """
|
49 |
+
# try:
|
50 |
+
# transcription = transcribe_audio(temp_video_file_name)
|
51 |
+
|
52 |
+
# if not transcription:
|
53 |
+
# print("Audio transcription failed")
|
54 |
+
# return
|
55 |
+
|
56 |
+
# structured_data = query_gemini_api(transcription)
|
57 |
+
|
58 |
+
# # Send structured data back or store it in a database, depending on your use case
|
59 |
+
# print("Processing complete. Structured data:", structured_data)
|
60 |
+
|
61 |
+
# except Exception as e:
|
62 |
+
# print(f"Error processing video: {e}")
|
63 |
+
|
64 |
+
# finally:
|
65 |
+
# # Clean up temporary files
|
66 |
+
# if os.path.exists(temp_video_file_name):
|
67 |
+
# os.remove(temp_video_file_name)
|
68 |
+
|
69 |
+
|
70 |
+
# @app.route('/process-video', methods=['POST'])
|
71 |
+
# def process_video():
|
72 |
+
# if 'video' not in request.files:
|
73 |
+
# return jsonify({"error": "No video file provided"}), 400
|
74 |
+
|
75 |
+
# video_file = request.files['video']
|
76 |
+
|
77 |
+
# try:
|
78 |
+
# # Save video to a temporary file
|
79 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
|
80 |
+
# video_file.save(temp_video_file.name)
|
81 |
+
# print(f"Video file saved: {temp_video_file.name}")
|
82 |
+
|
83 |
+
# # Start the video processing in a background thread
|
84 |
+
# threading.Thread(target=process_video_in_background, args=(video_file, temp_video_file.name)).start()
|
85 |
+
|
86 |
+
# return jsonify({"message": "Video is being processed in the background."}), 202
|
87 |
+
|
88 |
+
# except Exception as e:
|
89 |
+
# return jsonify({"error": str(e)}), 500
|
90 |
+
|
91 |
+
|
92 |
+
# def transcribe_audio(video_path):
|
93 |
+
# """
|
94 |
+
# Transcribe audio directly from a video file using Whisper AI.
|
95 |
+
# """
|
96 |
+
# try:
|
97 |
+
# print(f"Transcribing video: {video_path}")
|
98 |
+
# result = whisper_model.transcribe(video_path)
|
99 |
+
# return result['text']
|
100 |
+
# except Exception as e:
|
101 |
+
# print(f"Error in transcription: {e}")
|
102 |
+
# return None
|
103 |
+
|
104 |
+
|
105 |
+
# def query_gemini_api(transcription):
|
106 |
+
# """
|
107 |
+
# Send transcription text to Gemini API and fetch structured recipe information.
|
108 |
+
# """
|
109 |
+
# try:
|
110 |
+
# # Define the structured prompt
|
111 |
+
# prompt = (
|
112 |
+
# "Analyze the provided cooking video transcription and extract the following structured information:\n"
|
113 |
+
# "1. Recipe Name: Identify the name of the dish being prepared.\n"
|
114 |
+
# "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
|
115 |
+
# "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
|
116 |
+
# "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
|
117 |
+
# "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
|
118 |
+
# "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
|
119 |
+
# "7. Serving size: In count of people or portion size.\n"
|
120 |
+
# "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
|
121 |
+
# "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
|
122 |
+
# f"Text: {transcription}\n"
|
123 |
+
# )
|
124 |
+
|
125 |
+
# payload = {
|
126 |
+
# "contents": [
|
127 |
+
# {"parts": [{"text": prompt}]}
|
128 |
+
# ]
|
129 |
+
# }
|
130 |
+
# headers = {"Content-Type": "application/json"}
|
131 |
+
|
132 |
+
# # Send request to Gemini API
|
133 |
+
# response = requests.post(
|
134 |
+
# f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
|
135 |
+
# json=payload,
|
136 |
+
# headers=headers
|
137 |
+
# )
|
138 |
+
# response.raise_for_status()
|
139 |
+
|
140 |
+
# # Extract and return the structured data
|
141 |
+
# data = response.json()
|
142 |
+
# return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
|
143 |
+
|
144 |
+
# except requests.exceptions.RequestException as e:
|
145 |
+
# print(f"Error querying Gemini API: {e}")
|
146 |
+
# return {"error": str(e)}
|
147 |
+
|
148 |
+
|
149 |
+
# if __name__ == '__main__':
|
150 |
+
# app.run(debug=True)
|
151 |
+
|
152 |
+
|
153 |
+
# Above code is without polling and sleep
|
154 |
+
|
155 |
+
# Below is the latest code
|
156 |
import os
|
|
|
157 |
import whisper
|
158 |
import requests
|
159 |
import tempfile
|
160 |
import warnings
|
161 |
import threading
|
162 |
+
import time
|
163 |
+
from flask import Flask, request, jsonify
|
164 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
165 |
|
166 |
warnings.filterwarnings("ignore", category=UserWarning, module="whisper")
|
167 |
|
|
|
168 |
app = Flask(__name__)
|
169 |
|
|
|
170 |
# Gemini API settings
|
171 |
load_dotenv()
|
172 |
API_KEY = os.getenv("FIRST_API_KEY")
|
|
|
189 |
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
|
190 |
|
191 |
|
192 |
+
def process_video_in_background(video_file, temp_video_file_name, result_container):
|
193 |
"""
|
194 |
This function is executed in a separate thread to handle the long-running
|
195 |
video processing tasks such as transcription and querying the Gemini API.
|
|
|
198 |
transcription = transcribe_audio(temp_video_file_name)
|
199 |
|
200 |
if not transcription:
|
201 |
+
result_container["error"] = "Audio transcription failed"
|
202 |
return
|
203 |
|
204 |
structured_data = query_gemini_api(transcription)
|
205 |
|
206 |
+
# Save structured data to the result container to return later
|
207 |
+
result_container["data"] = structured_data
|
208 |
|
209 |
except Exception as e:
|
210 |
+
result_container["error"] = f"Error processing video: {e}"
|
211 |
|
212 |
finally:
|
213 |
# Clean up temporary files
|
|
|
221 |
return jsonify({"error": "No video file provided"}), 400
|
222 |
|
223 |
video_file = request.files['video']
|
224 |
+
result_container = {}
|
225 |
|
226 |
try:
|
227 |
# Save video to a temporary file
|
|
|
230 |
print(f"Video file saved: {temp_video_file.name}")
|
231 |
|
232 |
# Start the video processing in a background thread
|
233 |
+
threading.Thread(target=process_video_in_background, args=(video_file, temp_video_file.name, result_container)).start()
|
234 |
+
|
235 |
+
# Poll every 5 seconds to check if the result is available
|
236 |
+
while "data" not in result_container and "error" not in result_container:
|
237 |
+
print("Waiting for processing to complete...")
|
238 |
+
time.sleep(5) # Sleep for 5 seconds before checking again
|
239 |
|
240 |
+
# Check for the result
|
241 |
+
if "error" in result_container:
|
242 |
+
return jsonify({"error": result_container["error"]}), 500
|
243 |
+
else:
|
244 |
+
return jsonify({"message": "Processing complete", "data": result_container["data"]}), 200
|
245 |
|
246 |
except Exception as e:
|
247 |
return jsonify({"error": str(e)}), 500
|
|
|
295 |
)
|
296 |
response.raise_for_status()
|
297 |
|
298 |
+
# Polling for response (in case Gemini takes time to process)
|
299 |
+
polling_wait_time = 5 # Time to wait between polling attempts
|
300 |
+
polling_max_retries = 60 # Maximum number of retries
|
301 |
+
|
302 |
+
for attempt in range(polling_max_retries):
|
303 |
+
print(f"Attempt {attempt + 1} to fetch Gemini API response...")
|
304 |
+
response_data = response.json()
|
305 |
+
|
306 |
+
# Check if the response is ready
|
307 |
+
if "candidates" in response_data and len(response_data["candidates"]) > 0:
|
308 |
+
return response_data["candidates"][0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
|
309 |
+
|
310 |
+
time.sleep(polling_wait_time) # Wait before trying again
|
311 |
+
|
312 |
+
return "Gemini API response not ready after multiple attempts."
|
313 |
|
314 |
except requests.exceptions.RequestException as e:
|
315 |
print(f"Error querying Gemini API: {e}")
|
|
|
317 |
|
318 |
|
319 |
if __name__ == '__main__':
|
320 |
+
app.run(debug=True)
|