Spaces:
Running
Running
Added deepgram nova whisperAI application API
Browse files
app.py
CHANGED
@@ -85,21 +85,11 @@ async def process_audio():
|
|
85 |
return jsonify({"error": str(e)}), 500
|
86 |
|
87 |
|
88 |
-
|
89 |
-
import os
|
90 |
-
import json
|
91 |
-
from deepgram.clients import DeepgramClient
|
92 |
-
from deepgram.options import PrerecordedOptions
|
93 |
-
|
94 |
-
# Replace with your actual Deepgram API key
|
95 |
-
DEEPGRAM_API_KEY = "your_deepgram_api_key"
|
96 |
-
|
97 |
-
async def transcribe_audio(video_file_path, wav_file_path):
|
98 |
"""
|
99 |
Transcribe audio from a video file using Whisper AI (async function).
|
100 |
|
101 |
Args:
|
102 |
-
video_file_path (str): Path to the input video file.
|
103 |
wav_file_path (str): Path to save the converted WAV file.
|
104 |
|
105 |
Returns:
|
@@ -110,13 +100,13 @@ async def transcribe_audio(video_file_path, wav_file_path):
|
|
110 |
# Initialize Deepgram client
|
111 |
deepgram = DeepgramClient(DEEPGRAM_API_KEY)
|
112 |
|
113 |
-
# Convert video to audio in WAV format using FFmpeg
|
114 |
-
print("Converting video to audio (WAV format)...")
|
115 |
-
ffmpeg_command = [
|
116 |
-
|
117 |
-
]
|
118 |
-
subprocess.run(ffmpeg_command, check=True)
|
119 |
-
print(f"Conversion successful! WAV file saved at: {wav_file_path}")
|
120 |
|
121 |
# Open the converted WAV file
|
122 |
with open(wav_file_path, 'rb') as buffer_data:
|
@@ -153,14 +143,14 @@ async def transcribe_audio(video_file_path, wav_file_path):
|
|
153 |
return {"status": "error", "message": f"Error extracting transcript: {e}"}
|
154 |
|
155 |
# Path to the text file
|
156 |
-
output_text_file = "deepGramNovaTranscript.txt"
|
157 |
|
158 |
# Write the transcript to the text file
|
159 |
-
with open(output_text_file, "w", encoding="utf-8") as file:
|
160 |
-
|
161 |
|
162 |
print(f"Transcript saved to: {output_text_file}")
|
163 |
-
return
|
164 |
else:
|
165 |
return {"status": "error", "message": "Invalid response from Deepgram."}
|
166 |
|
|
|
85 |
return jsonify({"error": str(e)}), 500
|
86 |
|
87 |
|
88 |
+
async def transcribe_audio(wav_file_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
"""
|
90 |
Transcribe audio from a video file using Whisper AI (async function).
|
91 |
|
92 |
Args:
|
|
|
93 |
wav_file_path (str): Path to save the converted WAV file.
|
94 |
|
95 |
Returns:
|
|
|
100 |
# Initialize Deepgram client
|
101 |
deepgram = DeepgramClient(DEEPGRAM_API_KEY)
|
102 |
|
103 |
+
# # Convert video to audio in WAV format using FFmpeg
|
104 |
+
# print("Converting video to audio (WAV format)...")
|
105 |
+
# ffmpeg_command = [
|
106 |
+
# "ffmpeg", "-i", video_file_path, "-q:a", "0", "-map", "a", wav_file_path
|
107 |
+
# ]
|
108 |
+
# subprocess.run(ffmpeg_command, check=True)
|
109 |
+
# print(f"Conversion successful! WAV file saved at: {wav_file_path}")
|
110 |
|
111 |
# Open the converted WAV file
|
112 |
with open(wav_file_path, 'rb') as buffer_data:
|
|
|
143 |
return {"status": "error", "message": f"Error extracting transcript: {e}"}
|
144 |
|
145 |
# Path to the text file
|
146 |
+
# output_text_file = "deepGramNovaTranscript.txt"
|
147 |
|
148 |
# Write the transcript to the text file
|
149 |
+
# with open(output_text_file, "w", encoding="utf-8") as file:
|
150 |
+
# file.write(transcript)
|
151 |
|
152 |
print(f"Transcript saved to: {output_text_file}")
|
153 |
+
return transcript
|
154 |
else:
|
155 |
return {"status": "error", "message": "Invalid response from Deepgram."}
|
156 |
|