GoodML commited on
Commit
bfd0ee5
·
verified ·
1 Parent(s): b1d97e7

Added deepgram nova whisperAI application API

Browse files
Files changed (1) hide show
  1. app.py +12 -22
app.py CHANGED
@@ -85,21 +85,11 @@ async def process_audio():
85
  return jsonify({"error": str(e)}), 500
86
 
87
 
88
- import subprocess
89
- import os
90
- import json
91
- from deepgram.clients import DeepgramClient
92
- from deepgram.options import PrerecordedOptions
93
-
94
- # Replace with your actual Deepgram API key
95
- DEEPGRAM_API_KEY = "your_deepgram_api_key"
96
-
97
- async def transcribe_audio(video_file_path, wav_file_path):
98
  """
99
  Transcribe audio from a video file using Whisper AI (async function).
100
 
101
  Args:
102
- video_file_path (str): Path to the input video file.
103
  wav_file_path (str): Path to save the converted WAV file.
104
 
105
  Returns:
@@ -110,13 +100,13 @@ async def transcribe_audio(video_file_path, wav_file_path):
110
  # Initialize Deepgram client
111
  deepgram = DeepgramClient(DEEPGRAM_API_KEY)
112
 
113
- # Convert video to audio in WAV format using FFmpeg
114
- print("Converting video to audio (WAV format)...")
115
- ffmpeg_command = [
116
- "ffmpeg", "-i", video_file_path, "-q:a", "0", "-map", "a", wav_file_path
117
- ]
118
- subprocess.run(ffmpeg_command, check=True)
119
- print(f"Conversion successful! WAV file saved at: {wav_file_path}")
120
 
121
  # Open the converted WAV file
122
  with open(wav_file_path, 'rb') as buffer_data:
@@ -153,14 +143,14 @@ async def transcribe_audio(video_file_path, wav_file_path):
153
  return {"status": "error", "message": f"Error extracting transcript: {e}"}
154
 
155
  # Path to the text file
156
- output_text_file = "deepGramNovaTranscript.txt"
157
 
158
  # Write the transcript to the text file
159
- with open(output_text_file, "w", encoding="utf-8") as file:
160
- file.write(transcript)
161
 
162
  print(f"Transcript saved to: {output_text_file}")
163
- return {"status": "success", "transcript": transcript, "file_path": output_text_file}
164
  else:
165
  return {"status": "error", "message": "Invalid response from Deepgram."}
166
 
 
85
  return jsonify({"error": str(e)}), 500
86
 
87
 
88
+ async def transcribe_audio(wav_file_path):
 
 
 
 
 
 
 
 
 
89
  """
90
  Transcribe audio from a video file using Whisper AI (async function).
91
 
92
  Args:
 
93
  wav_file_path (str): Path to save the converted WAV file.
94
 
95
  Returns:
 
100
  # Initialize Deepgram client
101
  deepgram = DeepgramClient(DEEPGRAM_API_KEY)
102
 
103
+ # # Convert video to audio in WAV format using FFmpeg
104
+ # print("Converting video to audio (WAV format)...")
105
+ # ffmpeg_command = [
106
+ # "ffmpeg", "-i", video_file_path, "-q:a", "0", "-map", "a", wav_file_path
107
+ # ]
108
+ # subprocess.run(ffmpeg_command, check=True)
109
+ # print(f"Conversion successful! WAV file saved at: {wav_file_path}")
110
 
111
  # Open the converted WAV file
112
  with open(wav_file_path, 'rb') as buffer_data:
 
143
  return {"status": "error", "message": f"Error extracting transcript: {e}"}
144
 
145
  # Path to the text file
146
+ # output_text_file = "deepGramNovaTranscript.txt"
147
 
148
  # Write the transcript to the text file
149
+ # with open(output_text_file, "w", encoding="utf-8") as file:
150
+ # file.write(transcript)
151
 
152
  print(f"Transcript saved to: {output_text_file}")
153
+ return transcript
154
  else:
155
  return {"status": "error", "message": "Invalid response from Deepgram."}
156