Spaces:
Running
Running
Create app.py
Browse filesAdded flask source code for the API
app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import whisper
|
4 |
+
import requests
|
5 |
+
from flask import Flask, request, jsonify, send_file
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
app = Flask(__name__)
|
9 |
+
|
10 |
+
# Gemini API settings
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import requests
|
13 |
+
# Load the .env file
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
# Fetch the API key from the .env file
|
17 |
+
API_KEY = os.getenv("FIRST_API_KEY")
|
18 |
+
|
19 |
+
# Ensure the API key is loaded correctly
|
20 |
+
if not API_KEY:
|
21 |
+
raise ValueError("API Key not found. Make sure it is set in the .env file.")
|
22 |
+
|
23 |
+
GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
|
24 |
+
GEMINI_API_KEY = API_KEY
|
25 |
+
|
26 |
+
# Load Whisper AI model at startup
|
27 |
+
print("Loading Whisper AI model...")
|
28 |
+
whisper_model = whisper.load_model("base") # Choose model size: tiny, base, small, medium, large
|
29 |
+
print("Whisper AI model loaded successfully.")
|
30 |
+
|
31 |
+
@app.route('/process-video', methods=['POST'])
|
32 |
+
def process_video():
|
33 |
+
"""
|
34 |
+
Flask endpoint to process video:
|
35 |
+
1. Extract audio and transcribe using Whisper AI.
|
36 |
+
2. Send transcription to Gemini API for recipe information extraction.
|
37 |
+
3. Return structured data in the response.
|
38 |
+
"""
|
39 |
+
if 'video' not in request.files:
|
40 |
+
return jsonify({"error": "No video file provided"}), 400
|
41 |
+
|
42 |
+
video_file = request.files['video']
|
43 |
+
|
44 |
+
try:
|
45 |
+
# Save video to a temporary file
|
46 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
|
47 |
+
video_file.save(temp_video_file.name)
|
48 |
+
print(f"Video file saved: {temp_video_file.name}")
|
49 |
+
|
50 |
+
# Extract audio and transcribe using Whisper AI
|
51 |
+
transcription = transcribe_audio(temp_video_file.name)
|
52 |
+
|
53 |
+
if not transcription:
|
54 |
+
return jsonify({"error": "Audio transcription failed"}), 500
|
55 |
+
|
56 |
+
# Generate structured recipe information using Gemini API
|
57 |
+
structured_data = query_gemini_api(transcription)
|
58 |
+
|
59 |
+
return jsonify(structured_data)
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
return jsonify({"error": str(e)}), 500
|
63 |
+
|
64 |
+
finally:
|
65 |
+
# Clean up temporary files
|
66 |
+
if os.path.exists(temp_video_file.name):
|
67 |
+
os.remove(temp_video_file.name)
|
68 |
+
|
69 |
+
|
70 |
+
def transcribe_audio(video_path):
|
71 |
+
"""
|
72 |
+
Extract audio from video file and transcribe using Whisper AI.
|
73 |
+
"""
|
74 |
+
try:
|
75 |
+
# Extract audio using ffmpeg
|
76 |
+
audio_path = video_path.replace(".mp4", ".wav")
|
77 |
+
command = [
|
78 |
+
"ffmpeg",
|
79 |
+
"-i", video_path,
|
80 |
+
"-q:a", "0",
|
81 |
+
"-map", "a",
|
82 |
+
audio_path
|
83 |
+
]
|
84 |
+
subprocess.run(command, check=True)
|
85 |
+
print(f"Audio extracted to: {audio_path}")
|
86 |
+
|
87 |
+
# Transcribe audio using Whisper AI
|
88 |
+
print("Transcribing audio...")
|
89 |
+
result = whisper_model.transcribe(audio_path)
|
90 |
+
|
91 |
+
# Clean up audio file after transcription
|
92 |
+
if os.path.exists(audio_path):
|
93 |
+
os.remove(audio_path)
|
94 |
+
|
95 |
+
return result.get("text", "").strip()
|
96 |
+
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error in transcription: {e}")
|
99 |
+
return None
|
100 |
+
|
101 |
+
|
102 |
+
def query_gemini_api(transcription):
|
103 |
+
"""
|
104 |
+
Send transcription text to Gemini API and fetch structured recipe information.
|
105 |
+
"""
|
106 |
+
try:
|
107 |
+
# Define the structured prompt
|
108 |
+
prompt = (
|
109 |
+
"Analyze the provided cooking video transcription and extract the following structured information:\n"
|
110 |
+
"1. Recipe Name: Identify the name of the dish being prepared.\n"
|
111 |
+
"2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
|
112 |
+
"3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
|
113 |
+
"4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
|
114 |
+
"5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
|
115 |
+
"6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
|
116 |
+
"7. Serving size: In count of people or portion size.\n"
|
117 |
+
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
|
118 |
+
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
|
119 |
+
f"Text: {transcription}\n"
|
120 |
+
)
|
121 |
+
|
122 |
+
# Prepare the payload and headers
|
123 |
+
payload = {
|
124 |
+
"contents": [
|
125 |
+
{
|
126 |
+
"parts": [
|
127 |
+
{"text": prompt}
|
128 |
+
]
|
129 |
+
}
|
130 |
+
]
|
131 |
+
}
|
132 |
+
headers = {"Content-Type": "application/json"}
|
133 |
+
|
134 |
+
# Send request to Gemini API
|
135 |
+
print("Querying Gemini API...")
|
136 |
+
response = requests.post(
|
137 |
+
f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
|
138 |
+
json=payload,
|
139 |
+
headers=headers
|
140 |
+
)
|
141 |
+
response.raise_for_status()
|
142 |
+
|
143 |
+
# Extract and return the structured data
|
144 |
+
data = response.json()
|
145 |
+
return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
|
146 |
+
|
147 |
+
except requests.exceptions.RequestException as e:
|
148 |
+
print(f"Error querying Gemini API: {e}")
|
149 |
+
return {"error": str(e)}
|
150 |
+
|
151 |
+
|
152 |
+
if __name__ == '__main__':
|
153 |
+
app.run(debug=True)
|