Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,8 @@ import asyncio
|
|
5 |
import aiohttp # For making async HTTP requests
|
6 |
from quart import Quart, request, jsonify, render_template
|
7 |
from dotenv import load_dotenv
|
|
|
|
|
8 |
import warnings
|
9 |
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
|
10 |
|
@@ -18,11 +20,17 @@ print("ENV LOADED, ANIKET")
|
|
18 |
|
19 |
# Fetch the API key from the .env file
|
20 |
API_KEY = os.getenv("FIRST_API_KEY")
|
|
|
21 |
|
22 |
# Ensure the API key is loaded correctly
|
23 |
if not API_KEY:
|
24 |
raise ValueError("API Key not found. Make sure it is set in the .env file.")
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
|
27 |
GEMINI_API_KEY = API_KEY
|
28 |
|
@@ -77,26 +85,96 @@ async def process_audio():
|
|
77 |
return jsonify({"error": str(e)}), 500
|
78 |
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
try:
|
86 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
87 |
-
audio_file.save(temp_audio_file.name)
|
88 |
-
print(f"Temporary audio file saved: {temp_audio_file.name}")
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
result = await loop.run_in_executor(None, whisper_model.transcribe, temp_audio_file.name)
|
93 |
-
print("THE RESULTS ARE", result)
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
except Exception as e:
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
100 |
|
101 |
|
102 |
async def query_gemini_api(transcription):
|
|
|
5 |
import aiohttp # For making async HTTP requests
|
6 |
from quart import Quart, request, jsonify, render_template
|
7 |
from dotenv import load_dotenv
|
8 |
+
from deepgram import DeepgramClient, PrerecordedOptions
|
9 |
+
|
10 |
import warnings
|
11 |
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
|
12 |
|
|
|
20 |
|
21 |
# Fetch the API key from the .env file
|
22 |
API_KEY = os.getenv("FIRST_API_KEY")
|
23 |
+
DEEPGRAM_API_KEY = os.getenv("SECOND_API_KEY")
|
24 |
|
25 |
# Ensure the API key is loaded correctly
|
26 |
if not API_KEY:
|
27 |
raise ValueError("API Key not found. Make sure it is set in the .env file.")
|
28 |
|
29 |
+
# Ensure the API key is loaded correctly
|
30 |
+
if not DEEPGRAM_API_KEY:
|
31 |
+
raise ValueError("DEEPGRAM_API_KEY not found. Make sure it is set in the .env file.")
|
32 |
+
|
33 |
+
|
34 |
GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
|
35 |
GEMINI_API_KEY = API_KEY
|
36 |
|
|
|
85 |
return jsonify({"error": str(e)}), 500
|
86 |
|
87 |
|
88 |
+
import subprocess
|
89 |
+
import os
|
90 |
+
import json
|
91 |
+
from deepgram.clients import DeepgramClient
|
92 |
+
from deepgram.options import PrerecordedOptions
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Replace with your actual Deepgram API key
|
95 |
+
DEEPGRAM_API_KEY = "your_deepgram_api_key"
|
|
|
|
|
96 |
|
97 |
+
async def transcribe_audio(video_file_path, wav_file_path):
|
98 |
+
"""
|
99 |
+
Transcribe audio from a video file using Whisper AI (async function).
|
100 |
+
|
101 |
+
Args:
|
102 |
+
video_file_path (str): Path to the input video file.
|
103 |
+
wav_file_path (str): Path to save the converted WAV file.
|
104 |
|
105 |
+
Returns:
|
106 |
+
dict: A dictionary containing status, transcript, or error message.
|
107 |
+
"""
|
108 |
+
print("Entered the transcribe_audio function")
|
109 |
+
try:
|
110 |
+
# Initialize Deepgram client
|
111 |
+
deepgram = DeepgramClient(DEEPGRAM_API_KEY)
|
112 |
+
|
113 |
+
# Convert video to audio in WAV format using FFmpeg
|
114 |
+
print("Converting video to audio (WAV format)...")
|
115 |
+
ffmpeg_command = [
|
116 |
+
"ffmpeg", "-i", video_file_path, "-q:a", "0", "-map", "a", wav_file_path
|
117 |
+
]
|
118 |
+
subprocess.run(ffmpeg_command, check=True)
|
119 |
+
print(f"Conversion successful! WAV file saved at: {wav_file_path}")
|
120 |
+
|
121 |
+
# Open the converted WAV file
|
122 |
+
with open(wav_file_path, 'rb') as buffer_data:
|
123 |
+
payload = {'buffer': buffer_data}
|
124 |
+
|
125 |
+
# Configure transcription options
|
126 |
+
options = PrerecordedOptions(
|
127 |
+
smart_format=True, model="nova-2", language="en-US"
|
128 |
+
)
|
129 |
+
|
130 |
+
# Transcribe the audio
|
131 |
+
response = deepgram.listen.prerecorded.v('1').transcribe_file(payload, options)
|
132 |
+
|
133 |
+
# Check if the response is valid
|
134 |
+
if response:
|
135 |
+
print("Request successful! Processing response.")
|
136 |
+
|
137 |
+
# Convert response to JSON string
|
138 |
+
try:
|
139 |
+
data_str = response.to_json(indent=4)
|
140 |
+
except AttributeError as e:
|
141 |
+
return {"status": "error", "message": f"Error converting response to JSON: {e}"}
|
142 |
+
|
143 |
+
# Parse the JSON string to a Python dictionary
|
144 |
+
try:
|
145 |
+
data = json.loads(data_str)
|
146 |
+
except json.JSONDecodeError as e:
|
147 |
+
return {"status": "error", "message": f"Error parsing JSON string: {e}"}
|
148 |
+
|
149 |
+
# Extract the transcript
|
150 |
+
try:
|
151 |
+
transcript = data["results"]["channels"][0]["alternatives"][0]["transcript"]
|
152 |
+
except KeyError as e:
|
153 |
+
return {"status": "error", "message": f"Error extracting transcript: {e}"}
|
154 |
+
|
155 |
+
# Path to the text file
|
156 |
+
output_text_file = "deepGramNovaTranscript.txt"
|
157 |
+
|
158 |
+
# Write the transcript to the text file
|
159 |
+
with open(output_text_file, "w", encoding="utf-8") as file:
|
160 |
+
file.write(transcript)
|
161 |
+
|
162 |
+
print(f"Transcript saved to: {output_text_file}")
|
163 |
+
return {"status": "success", "transcript": transcript, "file_path": output_text_file}
|
164 |
+
else:
|
165 |
+
return {"status": "error", "message": "Invalid response from Deepgram."}
|
166 |
+
|
167 |
+
except FileNotFoundError:
|
168 |
+
return {"status": "error", "message": f"Video file not found: {video_file_path}"}
|
169 |
+
except subprocess.CalledProcessError as e:
|
170 |
+
return {"status": "error", "message": f"Error during audio conversion: {e}"}
|
171 |
except Exception as e:
|
172 |
+
return {"status": "error", "message": f"Unexpected error: {e}"}
|
173 |
+
finally:
|
174 |
+
# Clean up the temporary WAV file
|
175 |
+
if os.path.exists(wav_file_path):
|
176 |
+
os.remove(wav_file_path)
|
177 |
+
print(f"Temporary WAV file deleted: {wav_file_path}")
|
178 |
|
179 |
|
180 |
async def query_gemini_api(transcription):
|