Spaces:
Sleeping
Sleeping
File size: 1,469 Bytes
a1d4102 4942701 a1d4102 4942701 137e221 4942701 137e221 4942701 5d09621 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
import hopsworks
labels = ['Low', 'Medium', 'High']
project = hopsworks.login()
fs = project.get_feature_store()
dataset_api = project.get_dataset_api()
dataset_api.download("Resources/images/wine_df_recent.png")
dataset_api.download("Resources/images/wine_confusion_matrix.png")
monitor_fg = fs.get_or_create_feature_group(name="wine_predictions", version=1, primary_key=["datetime"],
description="Wine quality Prediction/Outcome Monitoring")
history_df = monitor_fg.read()
last_prediction = history_df.tail(1)
last_prediction = last_prediction.to_dict(orient='records')[0]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Label("Today's Predicted")
gr.Label(f"{labels[last_prediction['prediction']] + ' quality' if last_prediction is not None else 'No predictions yet'}")
with gr.Column():
gr.Label("Today's Actual quality")
gr.Label(f"{labels[int(last_prediction['label'])] + ' quality' if last_prediction is not None else 'No predictions yet'}")
with gr.Row():
with gr.Column():
gr.Label("Recent Prediction History")
gr.Image("wine_df_recent.png", elem_id="recent-predictions")
with gr.Column():
gr.Label("Confusion Maxtrix with Historical Prediction Performance")
gr.Image("wine_confusion_matrix.png", elem_id="confusion-matrix")
demo.launch()
|