Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -3,65 +3,190 @@ import hopsworks
|
|
3 |
import joblib
|
4 |
import pandas as pd
|
5 |
|
6 |
-
features =
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
project = hopsworks.login()
|
21 |
fs = project.get_feature_store()
|
22 |
|
23 |
mr = project.get_model_registry()
|
24 |
-
model = mr.get_model("
|
25 |
model_dir = model.download()
|
26 |
-
model = joblib.load(model_dir + "/
|
27 |
print("Model downloaded")
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
print("Predicting")
|
36 |
print(df)
|
37 |
-
|
38 |
res = model.predict(df)
|
39 |
-
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
|
40 |
-
# the first element.
|
41 |
-
# print("Res: {0}").format(res)
|
42 |
-
print(res)
|
43 |
|
44 |
-
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
demo = gr.Interface(
|
48 |
-
fn=
|
49 |
-
title="
|
50 |
-
description="
|
51 |
allow_flagging="never",
|
52 |
inputs=[
|
53 |
-
gr.components.Number(label='
|
54 |
-
gr.components.
|
55 |
-
gr.components.
|
56 |
-
gr.components.
|
57 |
-
gr.components.
|
58 |
-
gr.components.
|
59 |
-
gr.components.Number(label='total sulfur dioxide'),
|
60 |
-
gr.components.Number(label='density'),
|
61 |
-
gr.components.Number(label='pH'),
|
62 |
-
gr.components.Number(label='sulphates'),
|
63 |
-
gr.components.Number(label='alcohol'),
|
64 |
-
gr.components.Checkbox(label='is white'),
|
65 |
],
|
66 |
outputs=gr.Text())
|
67 |
|
|
|
3 |
import joblib
|
4 |
import pandas as pd
|
5 |
|
6 |
+
features = ['work_year',
|
7 |
+
'experience_level',
|
8 |
+
'company_size',
|
9 |
+
'eur',
|
10 |
+
'gbp',
|
11 |
+
'usd',
|
12 |
+
'engineer',
|
13 |
+
'scientist',
|
14 |
+
'research',
|
15 |
+
'analyst',
|
16 |
+
'analytics_engineer',
|
17 |
+
'applied_scientist',
|
18 |
+
'bi_developer',
|
19 |
+
'business_intelligence_analyst',
|
20 |
+
'business_intelligence_engineer',
|
21 |
+
'data_analyst',
|
22 |
+
'data_architect',
|
23 |
+
'data_engineer',
|
24 |
+
'data_manager',
|
25 |
+
'data_science_consultant',
|
26 |
+
'data_science_manager',
|
27 |
+
'data_scientist',
|
28 |
+
'ml_engineer',
|
29 |
+
'machine_learning_engineer',
|
30 |
+
'machine_learning_scientist',
|
31 |
+
'research_analyst',
|
32 |
+
'research_engineer',
|
33 |
+
'research_scientist',
|
34 |
+
'gdp',
|
35 |
+
'cpi']
|
36 |
+
|
37 |
+
|
38 |
+
labels = ['(16454.999, 122000.0]', '(122000.0, 170000.0]', '(170000.0, 329700.0]']
|
39 |
|
40 |
project = hopsworks.login()
|
41 |
fs = project.get_feature_store()
|
42 |
|
43 |
mr = project.get_model_registry()
|
44 |
+
model = mr.get_model("salary_model", version=4)
|
45 |
model_dir = model.download()
|
46 |
+
model = joblib.load(model_dir + "/model.pkl")
|
47 |
print("Model downloaded")
|
48 |
|
49 |
+
import requests
|
50 |
+
|
51 |
+
def get_gdp_by_country_code(country_code, year=2023, index='FP.CPI.TOTL'):
|
52 |
+
# World Bank API endpoint for GDP data
|
53 |
+
api_url = f'http://api.worldbank.org/v2/country/{country_code}/indicator/{index}?data={year}&format=json'
|
54 |
+
|
55 |
+
|
56 |
+
# Make a GET request to the API
|
57 |
+
response = requests.get(api_url)
|
58 |
+
|
59 |
+
# Check if the request was successful (status code 200)
|
60 |
+
if response.status_code == 200:
|
61 |
+
# Parse the JSON response
|
62 |
+
data = response.json()
|
63 |
+
|
64 |
+
# Extract the GDP value from the response
|
65 |
+
gdp_value = data[1][0]['value'] if data[1] else None
|
66 |
+
|
67 |
+
return gdp_value
|
68 |
+
else:
|
69 |
+
# If the request was not successful, print an error message
|
70 |
+
print(f"Error: Unable to fetch data. Status code: {response.status_code}")
|
71 |
+
return None
|
72 |
+
|
73 |
+
def salary(work_year,
|
74 |
+
experience_level,
|
75 |
+
company_size,
|
76 |
+
currency,
|
77 |
+
job_title,
|
78 |
+
country)-> str:
|
79 |
+
|
80 |
+
other_param = {}
|
81 |
+
|
82 |
+
other_param['gdp'] = get_gdp_by_country_code(country, work_year, 'NY.GDP.MKTP.CD')
|
83 |
+
other_param['cpi'] = get_gdp_by_country_code(country, work_year, 'FP.CPI.TOTL')
|
84 |
+
|
85 |
+
jobs = ['analytics_engineer',
|
86 |
+
'applied_scientist',
|
87 |
+
'bi_developer',
|
88 |
+
'business_intelligence_analyst',
|
89 |
+
'business_intelligence_engineer',
|
90 |
+
'data_analyst',
|
91 |
+
'data_architect',
|
92 |
+
'data_engineer',
|
93 |
+
'data_manager',
|
94 |
+
'data_science_consultant',
|
95 |
+
'data_science_manager',
|
96 |
+
'data_scientist',
|
97 |
+
'ml_engineer',
|
98 |
+
'machine_learning_engineer',
|
99 |
+
'machine_learning_scientist',
|
100 |
+
'research_analyst',
|
101 |
+
'research_engineer',
|
102 |
+
'research_scientist']
|
103 |
+
|
104 |
+
jobs_flag ={}
|
105 |
+
|
106 |
+
for name in jobs:
|
107 |
+
if name == job_title.lower().replace(' ', '_'):
|
108 |
+
jobs_flag[name] = True
|
109 |
+
else:
|
110 |
+
jobs_flag[name] = False
|
111 |
|
112 |
+
role = [
|
113 |
+
'engineer',
|
114 |
+
'scientist',
|
115 |
+
'research',
|
116 |
+
'analyst'
|
117 |
+
]
|
118 |
+
|
119 |
+
role_flag = {}
|
120 |
+
|
121 |
+
for name in role:
|
122 |
+
if role in job_title.lower():
|
123 |
+
role_flag[name]= True
|
124 |
+
else:
|
125 |
+
role_flag[name] = False
|
126 |
+
|
127 |
+
currency_flag = {
|
128 |
+
'eur': False,
|
129 |
+
'gbp': False,
|
130 |
+
'usd': False
|
131 |
+
}
|
132 |
+
|
133 |
+
currency_flag[currency.lower()] = True
|
134 |
+
|
135 |
+
company_size_dic = {
|
136 |
+
'S': 0,
|
137 |
+
'M': 1,
|
138 |
+
'L': 2,
|
139 |
+
}
|
140 |
+
|
141 |
+
other_param['company_size'] = company_size_dic[company_size]
|
142 |
+
|
143 |
+
experience_level_map = {
|
144 |
+
'EN': 0,
|
145 |
+
'MI': 1,
|
146 |
+
'SE': 2,
|
147 |
+
'EX': 3
|
148 |
+
}
|
149 |
+
|
150 |
+
other_param['experience_level'] = experience_level_map[experience_level]
|
151 |
+
|
152 |
+
params = {}
|
153 |
+
|
154 |
+
params.update(other_param)
|
155 |
+
params.update(jobs_flag)
|
156 |
+
params.update(currency_flag)
|
157 |
+
params.update(role_flag)
|
158 |
+
|
159 |
+
|
160 |
+
df = pd.DataFrame(params)
|
161 |
print("Predicting")
|
162 |
print(df)
|
163 |
+
|
164 |
res = model.predict(df)
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
print(f"{labels[res[0]]} $")
|
167 |
+
return f"{labels[res[0]]} $"
|
168 |
|
169 |
+
job_title_options = [
|
170 |
+
'Analytics Engineer', 'Applied Scientist', 'BI Developer',
|
171 |
+
'Business Intelligence Analyst', 'Business Intelligence Engineer',
|
172 |
+
'Data Analyst', 'Data Architect', 'Data Engineer', 'Data Manager',
|
173 |
+
'Data Science Consultant', 'Data Science Manager', 'Data Scientist',
|
174 |
+
'ML Engineer', 'Machine Learning Engineer', 'Machine Learning Scientist',
|
175 |
+
'Research Analyst', 'Research Engineer', 'Research Scientist'
|
176 |
+
]
|
177 |
|
178 |
demo = gr.Interface(
|
179 |
+
fn=salary,
|
180 |
+
title="Salary prediction",
|
181 |
+
description="Prediction of the salary in USD",
|
182 |
allow_flagging="never",
|
183 |
inputs=[
|
184 |
+
gr.components.Number(label='Work Year', bind='work_year'),
|
185 |
+
gr.components.Select(label='Experience Level', options=['EN', 'MI', 'SE', 'EX'], bind='experience_level'),
|
186 |
+
gr.components.Select(label='Company Size', options=['S', 'M', 'L'], bind='company_size'),
|
187 |
+
gr.components.Select(label='Currency', options=['EUR', 'GBP', 'USD'], bind='currency'),
|
188 |
+
gr.components.Select(label='Job Title', options=job_title_options, bind='job_title'),
|
189 |
+
gr.components.TextInput(label='Country (3 letter code)', bind='country')
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
],
|
191 |
outputs=gr.Text())
|
192 |
|