Goodnight7 commited on
Commit
77616b1
·
verified ·
1 Parent(s): 06aa716

update embed model

Browse files
Files changed (1) hide show
  1. utils.py +5 -3
utils.py CHANGED
@@ -24,12 +24,12 @@ def retriever(n_docs=5):
24
  vector_database_path = "chromadb3"
25
 
26
  #embeddings_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
27
- embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
28
 
29
 
30
  vectorstore = Chroma(collection_name="chroma_db",
31
  persist_directory=vector_database_path,
32
- embedding_function=embeddings_model)
33
 
34
  vs_retriever = vectorstore.as_retriever(k=n_docs)
35
 
@@ -96,7 +96,9 @@ def get_expression_chain(retriever: BaseRetriever, model_name="llama-3.1-70b-ver
96
  chain = ingress | prompt | llm
97
  return chain
98
 
99
- embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
 
 
100
  #Generate embeddings for a given text
101
  def get_embeddings(text):
102
  return embedding_model.embed([text], task_type='search_document')[0]
 
24
  vector_database_path = "chromadb3"
25
 
26
  #embeddings_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
27
+ embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
28
 
29
 
30
  vectorstore = Chroma(collection_name="chroma_db",
31
  persist_directory=vector_database_path,
32
+ embedding_function=embedding_model)
33
 
34
  vs_retriever = vectorstore.as_retriever(k=n_docs)
35
 
 
96
  chain = ingress | prompt | llm
97
  return chain
98
 
99
+ #embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
100
+ embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
101
+
102
  #Generate embeddings for a given text
103
  def get_embeddings(text):
104
  return embedding_model.embed([text], task_type='search_document')[0]