Spaces:
Sleeping
Sleeping
update embed model
Browse files
utils.py
CHANGED
@@ -24,12 +24,12 @@ def retriever(n_docs=5):
|
|
24 |
vector_database_path = "chromadb3"
|
25 |
|
26 |
#embeddings_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
|
27 |
-
|
28 |
|
29 |
|
30 |
vectorstore = Chroma(collection_name="chroma_db",
|
31 |
persist_directory=vector_database_path,
|
32 |
-
embedding_function=
|
33 |
|
34 |
vs_retriever = vectorstore.as_retriever(k=n_docs)
|
35 |
|
@@ -96,7 +96,9 @@ def get_expression_chain(retriever: BaseRetriever, model_name="llama-3.1-70b-ver
|
|
96 |
chain = ingress | prompt | llm
|
97 |
return chain
|
98 |
|
99 |
-
embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
|
|
|
|
|
100 |
#Generate embeddings for a given text
|
101 |
def get_embeddings(text):
|
102 |
return embedding_model.embed([text], task_type='search_document')[0]
|
|
|
24 |
vector_database_path = "chromadb3"
|
25 |
|
26 |
#embeddings_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
|
27 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
28 |
|
29 |
|
30 |
vectorstore = Chroma(collection_name="chroma_db",
|
31 |
persist_directory=vector_database_path,
|
32 |
+
embedding_function=embedding_model)
|
33 |
|
34 |
vs_retriever = vectorstore.as_retriever(k=n_docs)
|
35 |
|
|
|
96 |
chain = ingress | prompt | llm
|
97 |
return chain
|
98 |
|
99 |
+
#embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
|
100 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
101 |
+
|
102 |
#Generate embeddings for a given text
|
103 |
def get_embeddings(text):
|
104 |
return embedding_model.embed([text], task_type='search_document')[0]
|