File size: 6,698 Bytes
8ccf632
 
 
 
 
81b26b5
06f0278
 
8ccf632
 
63f17a8
 
 
 
8ccf632
 
06f0278
8ccf632
63f17a8
 
 
 
 
 
 
 
 
 
 
 
8ccf632
63f17a8
 
54192f0
 
63f17a8
 
8ccf632
 
63f17a8
 
 
 
 
 
 
 
8ccf632
63f17a8
8ccf632
63f17a8
 
 
 
 
8ccf632
 
f8d6556
63f17a8
8ccf632
 
f8d6556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
 
 
f8d6556
8ccf632
f8d6556
 
 
 
 
 
63f17a8
f8d6556
 
 
 
 
 
 
 
8ccf632
 
 
63f17a8
8ccf632
 
f8d6556
8ccf632
f8d6556
 
 
 
 
 
8ccf632
 
f8d6556
 
 
 
 
8ccf632
f8d6556
 
 
 
 
 
 
 
8ccf632
f8d6556
 
 
8ccf632
f8d6556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
f8d6556
8ccf632
 
 
 
 
 
f8d6556
 
 
 
 
 
 
 
 
63f17a8
 
 
 
 
 
 
8ccf632
9aa8809
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell",
    torch_dtype=dtype
).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

def enhance_prompt_for_pattern(prompt):
    """Add specific terms to ensure seamless, tileable patterns."""
    pattern_terms = [
        "seamless pattern",
        "tileable textile design",
        "repeating pattern",
        "high-quality fabric design",
        "continuous pattern",
    ]
    enhanced_prompt = f"{prompt}, {random.choice(pattern_terms)}, suitable for textile printing, high-quality fabric design, seamless edges"
    return enhanced_prompt

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, 
          num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    enhanced_prompt = enhance_prompt_for_pattern(prompt)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt=enhanced_prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=0.0
    ).images[0]
    
    return image, seed

examples = [
    "geometric Art Deco shapes in gold and navy",
    "delicate floral motifs with small roses and leaves",
    "abstract watercolor spots in pastel colors",
    "traditional paisley design in earth tones",
    "modern minimalist lines and circles",
]

# Enhanced CSS for better visual design and mobile responsiveness
css = """
#col-container {
    margin: 0 auto;
    max-width: 800px !important;
    padding: 20px;
}

.main-title {
    text-align: center;
    color: #2d3748;
    margin-bottom: 1rem;
    font-family: 'Poppins', sans-serif;
}

.subtitle {
    text-align: center;
    color: #4a5568;
    margin-bottom: 2rem;
    font-family: 'Inter', sans-serif;
    font-size: 0.95rem;
    line-height: 1.5;
}

.pattern-input {
    border: 2px solid #e2e8f0;
    border-radius: 10px;
    padding: 12px !important;
    margin-bottom: 1rem !important;
    font-size: 1rem;
    transition: all 0.3s ease;
}

.pattern-input:focus {
    border-color: #4299e1;
    box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.1);
}

.generate-button {
    background-color: #4299e1 !important;
    color: white !important;
    padding: 12px 24px !important;
    border-radius: 8px !important;
    font-weight: 600 !important;
    transition: all 0.3s ease !important;
}

.generate-button:hover {
    background-color: #3182ce !important;
    transform: translateY(-1px);
}

.result-image {
    border-radius: 12px;
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
    margin-top: 1rem;
}

.advanced-settings {
    margin-top: 1.5rem;
    border: 1px solid #e2e8f0;
    border-radius: 10px;
    padding: 1rem;
}

/* Mobile Responsiveness */
@media (max-width: 768px) {
    #col-container {
        padding: 12px;
    }
    
    .main-title {
        font-size: 1.5rem;
    }
    
    .subtitle {
        font-size: 0.9rem;
    }
    
    .pattern-input {
        font-size: 0.9rem;
    }
}

/* Custom styling for examples section */
.examples-section {
    margin-top: 2rem;
    padding: 1rem;
    background: #f7fafc;
    border-radius: 10px;
}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            # 🎨 Deradh's AI Pattern Master
            """,
            elem_classes=["main-title"]
        )
        
        gr.Markdown(
            """
            Create beautiful, seamless patterns for your textile designs using AI. 
            Simply describe your desired pattern, and watch as AI brings your vision to life with 
            professional-quality, repeatable patterns perfect for fabrics and materials.
            """,
            elem_classes=["subtitle"]
        )
        
        with gr.Row():
            prompt = gr.Text(
                label="Pattern Description",
                show_label=False,
                max_lines=1,
                placeholder="Describe your dream pattern (e.g., 'geometric Art Deco shapes in gold and navy')",
                container=False,
                elem_classes=["pattern-input"]
            )
            run_button = gr.Button(
                "✨ Generate",
                scale=0,
                elem_classes=["generate-button"]
            )
        
        result = gr.Image(
            label="Your Generated Pattern",
            show_label=True,
            elem_classes=["result-image"]
        )
        
        with gr.Accordion("🔧 Advanced Settings", open=False):
            with gr.Group(elem_classes=["advanced-settings"]):
                seed = gr.Slider(
                    label="Pattern Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(
                    label="Randomize Pattern",
                    value=True
                )
                
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                
                num_inference_steps = gr.Slider(
                    label="Generation Quality (Steps)",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
        
        with gr.Group(elem_classes=["examples-section"]):
            gr.Markdown("### 💫 Try These Examples")
            gr.Examples(
                examples=examples,
                fn=infer,
                inputs=[prompt],
                outputs=[result, seed],
                cache_examples="lazy"
            )
        
        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=infer,
            inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
            outputs=[result, seed]
        )

demo.launch()