Spaces:
Runtime error
Runtime error
File size: 6,698 Bytes
8ccf632 81b26b5 06f0278 8ccf632 63f17a8 8ccf632 06f0278 8ccf632 63f17a8 8ccf632 63f17a8 54192f0 63f17a8 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 f8d6556 63f17a8 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 63f17a8 f8d6556 8ccf632 63f17a8 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 63f17a8 8ccf632 9aa8809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def enhance_prompt_for_pattern(prompt):
"""Add specific terms to ensure seamless, tileable patterns."""
pattern_terms = [
"seamless pattern",
"tileable textile design",
"repeating pattern",
"high-quality fabric design",
"continuous pattern",
]
enhanced_prompt = f"{prompt}, {random.choice(pattern_terms)}, suitable for textile printing, high-quality fabric design, seamless edges"
return enhanced_prompt
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024,
num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
enhanced_prompt = enhance_prompt_for_pattern(prompt)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=enhanced_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
return image, seed
examples = [
"geometric Art Deco shapes in gold and navy",
"delicate floral motifs with small roses and leaves",
"abstract watercolor spots in pastel colors",
"traditional paisley design in earth tones",
"modern minimalist lines and circles",
]
# Enhanced CSS for better visual design and mobile responsiveness
css = """
#col-container {
margin: 0 auto;
max-width: 800px !important;
padding: 20px;
}
.main-title {
text-align: center;
color: #2d3748;
margin-bottom: 1rem;
font-family: 'Poppins', sans-serif;
}
.subtitle {
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
font-family: 'Inter', sans-serif;
font-size: 0.95rem;
line-height: 1.5;
}
.pattern-input {
border: 2px solid #e2e8f0;
border-radius: 10px;
padding: 12px !important;
margin-bottom: 1rem !important;
font-size: 1rem;
transition: all 0.3s ease;
}
.pattern-input:focus {
border-color: #4299e1;
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.1);
}
.generate-button {
background-color: #4299e1 !important;
color: white !important;
padding: 12px 24px !important;
border-radius: 8px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
.generate-button:hover {
background-color: #3182ce !important;
transform: translateY(-1px);
}
.result-image {
border-radius: 12px;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
margin-top: 1rem;
}
.advanced-settings {
margin-top: 1.5rem;
border: 1px solid #e2e8f0;
border-radius: 10px;
padding: 1rem;
}
/* Mobile Responsiveness */
@media (max-width: 768px) {
#col-container {
padding: 12px;
}
.main-title {
font-size: 1.5rem;
}
.subtitle {
font-size: 0.9rem;
}
.pattern-input {
font-size: 0.9rem;
}
}
/* Custom styling for examples section */
.examples-section {
margin-top: 2rem;
padding: 1rem;
background: #f7fafc;
border-radius: 10px;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# 🎨 Deradh's AI Pattern Master
""",
elem_classes=["main-title"]
)
gr.Markdown(
"""
Create beautiful, seamless patterns for your textile designs using AI.
Simply describe your desired pattern, and watch as AI brings your vision to life with
professional-quality, repeatable patterns perfect for fabrics and materials.
""",
elem_classes=["subtitle"]
)
with gr.Row():
prompt = gr.Text(
label="Pattern Description",
show_label=False,
max_lines=1,
placeholder="Describe your dream pattern (e.g., 'geometric Art Deco shapes in gold and navy')",
container=False,
elem_classes=["pattern-input"]
)
run_button = gr.Button(
"✨ Generate",
scale=0,
elem_classes=["generate-button"]
)
result = gr.Image(
label="Your Generated Pattern",
show_label=True,
elem_classes=["result-image"]
)
with gr.Accordion("🔧 Advanced Settings", open=False):
with gr.Group(elem_classes=["advanced-settings"]):
seed = gr.Slider(
label="Pattern Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(
label="Randomize Pattern",
value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Generation Quality (Steps)",
minimum=1,
maximum=50,
step=1,
value=4,
)
with gr.Group(elem_classes=["examples-section"]):
gr.Markdown("### 💫 Try These Examples")
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch() |