Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Initialize the model | |
pipe = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=dtype | |
).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# Pattern-specific prompt engineering | |
def enhance_prompt_for_pattern(prompt): | |
"""Add specific terms to ensure seamless, tileable patterns.""" | |
pattern_terms = [ | |
"seamless pattern", | |
"tileable textile design", | |
"repeating pattern", | |
"high-quality fabric design", | |
"continuous pattern", | |
] | |
enhanced_prompt = f"{prompt}, {random.choice(pattern_terms)}, suitable for textile printing, high-quality fabric design, seamless edges" | |
return enhanced_prompt | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, | |
num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Enhance the prompt for pattern generation | |
enhanced_prompt = enhance_prompt_for_pattern(prompt) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=enhanced_prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0 | |
).images[0] | |
return image, seed | |
# Example prompts specifically for pattern generation | |
examples = [ | |
"geometric Art Deco shapes in gold and navy", | |
"delicate floral motifs with small roses and leaves", | |
"abstract watercolor spots in pastel colors", | |
"traditional paisley design in earth tones", | |
"modern minimalist lines and circles", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# Deradh's AI Pattern Master | |
### Create seamless, tileable patterns for high-quality textile designs | |
This tool specializes in generating patterns that can be used for fabric printing and textile design. | |
Each pattern is optimized to be seamless and repeatable. | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Pattern Description", | |
show_label=False, | |
max_lines=1, | |
placeholder="Describe your desired pattern (e.g., 'geometric Art Deco shapes in gold and navy')", | |
container=False, | |
) | |
run_button = gr.Button("Generate Pattern", scale=0) | |
result = gr.Image(label="Generated Pattern", show_label=True) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs=[result, seed] | |
) | |
demo.launch() |