Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import random
|
|
4 |
import spaces
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline
|
|
|
7 |
|
8 |
dtype = torch.bfloat16
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -16,8 +17,29 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
MAX_IMAGE_SIZE = 2048
|
18 |
|
19 |
-
|
20 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
pattern_terms = [
|
22 |
"seamless pattern",
|
23 |
"tileable textile design",
|
@@ -25,16 +47,37 @@ def enhance_prompt_for_pattern(prompt):
|
|
25 |
"high-quality fabric design",
|
26 |
"continuous pattern",
|
27 |
]
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return enhanced_prompt
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
@spaces.GPU()
|
32 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024,
|
33 |
num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
34 |
if randomize_seed:
|
35 |
seed = random.randint(0, MAX_SEED)
|
36 |
|
37 |
-
enhanced_prompt = enhance_prompt_for_pattern(prompt)
|
38 |
generator = torch.Generator().manual_seed(seed)
|
39 |
image = pipe(
|
40 |
prompt=enhanced_prompt,
|
@@ -45,31 +88,32 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024,
|
|
45 |
guidance_scale=0.0
|
46 |
).images[0]
|
47 |
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
examples = [
|
51 |
-
"geometric Art Deco shapes in gold and navy",
|
52 |
-
"delicate floral motifs with small roses and leaves",
|
53 |
-
"abstract watercolor spots in pastel colors",
|
54 |
-
"traditional paisley design in earth tones",
|
55 |
-
"modern minimalist lines and circles",
|
56 |
]
|
57 |
|
58 |
# Enhanced CSS for better visual design and mobile responsiveness
|
59 |
css = """
|
60 |
#col-container {
|
61 |
margin: 0 auto;
|
62 |
-
max-width:
|
63 |
padding: 20px;
|
64 |
}
|
65 |
-
|
66 |
.main-title {
|
67 |
text-align: center;
|
68 |
color: #2d3748;
|
69 |
margin-bottom: 1rem;
|
70 |
font-family: 'Poppins', sans-serif;
|
71 |
}
|
72 |
-
|
73 |
.subtitle {
|
74 |
text-align: center;
|
75 |
color: #4a5568;
|
@@ -78,7 +122,6 @@ css = """
|
|
78 |
font-size: 0.95rem;
|
79 |
line-height: 1.5;
|
80 |
}
|
81 |
-
|
82 |
.pattern-input {
|
83 |
border: 2px solid #e2e8f0;
|
84 |
border-radius: 10px;
|
@@ -87,12 +130,10 @@ css = """
|
|
87 |
font-size: 1rem;
|
88 |
transition: all 0.3s ease;
|
89 |
}
|
90 |
-
|
91 |
.pattern-input:focus {
|
92 |
border-color: #4299e1;
|
93 |
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.1);
|
94 |
}
|
95 |
-
|
96 |
.generate-button {
|
97 |
background-color: #4299e1 !important;
|
98 |
color: white !important;
|
@@ -101,25 +142,34 @@ css = """
|
|
101 |
font-weight: 600 !important;
|
102 |
transition: all 0.3s ease !important;
|
103 |
}
|
104 |
-
|
105 |
.generate-button:hover {
|
106 |
background-color: #3182ce !important;
|
107 |
transform: translateY(-1px);
|
108 |
}
|
109 |
-
|
110 |
.result-image {
|
111 |
border-radius: 12px;
|
112 |
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
113 |
margin-top: 1rem;
|
114 |
}
|
115 |
-
|
116 |
.advanced-settings {
|
117 |
margin-top: 1.5rem;
|
118 |
border: 1px solid #e2e8f0;
|
119 |
border-radius: 10px;
|
120 |
padding: 1rem;
|
121 |
}
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
/* Mobile Responsiveness */
|
124 |
@media (max-width: 768px) {
|
125 |
#col-container {
|
@@ -138,54 +188,71 @@ css = """
|
|
138 |
font-size: 0.9rem;
|
139 |
}
|
140 |
}
|
141 |
-
|
142 |
-
/* Custom styling for examples section */
|
143 |
-
.examples-section {
|
144 |
-
margin-top: 2rem;
|
145 |
-
padding: 1rem;
|
146 |
-
background: #f7fafc;
|
147 |
-
border-radius: 10px;
|
148 |
-
}
|
149 |
"""
|
150 |
|
151 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
152 |
with gr.Column(elem_id="col-container"):
|
153 |
gr.Markdown(
|
154 |
"""
|
155 |
-
# 🎨 Deradh's
|
156 |
""",
|
157 |
elem_classes=["main-title"]
|
158 |
)
|
159 |
|
160 |
gr.Markdown(
|
161 |
"""
|
162 |
-
Create
|
163 |
-
|
164 |
-
|
165 |
""",
|
166 |
elem_classes=["subtitle"]
|
167 |
)
|
168 |
|
169 |
with gr.Row():
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
with gr.Accordion("🔧 Advanced Settings", open=False):
|
191 |
with gr.Group(elem_classes=["advanced-settings"]):
|
@@ -226,20 +293,19 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
226 |
)
|
227 |
|
228 |
with gr.Group(elem_classes=["examples-section"]):
|
229 |
-
gr.Markdown("### 💫 Try These Examples")
|
230 |
gr.Examples(
|
231 |
examples=examples,
|
232 |
fn=infer,
|
233 |
-
inputs=[prompt],
|
234 |
-
outputs=[
|
235 |
-
cache_examples=
|
236 |
)
|
237 |
|
238 |
gr.on(
|
239 |
triggers=[run_button.click, prompt.submit],
|
240 |
fn=infer,
|
241 |
-
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
242 |
-
outputs=[
|
243 |
)
|
244 |
|
245 |
demo.launch()
|
|
|
4 |
import spaces
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline
|
7 |
+
from PIL import Image
|
8 |
|
9 |
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
MAX_IMAGE_SIZE = 2048
|
19 |
|
20 |
+
STYLE_OPTIONS = {
|
21 |
+
"Vintage": "vintage style, retro aesthetic, aged appearance",
|
22 |
+
"Realistic": "photorealistic, detailed, true-to-life",
|
23 |
+
"Geometric": "geometric shapes, precise lines, mathematical patterns",
|
24 |
+
"Abstract": "abstract design, non-representational, artistic",
|
25 |
+
"Minimalist": "simple, clean lines, understated",
|
26 |
+
"Bohemian": "boho style, free-spirited, eclectic",
|
27 |
+
"Traditional": "classical design, timeless patterns",
|
28 |
+
"Contemporary": "modern style, current trends"
|
29 |
+
}
|
30 |
+
|
31 |
+
FABRIC_OPTIONS = {
|
32 |
+
"None": "",
|
33 |
+
"Cotton": "cotton textile texture, natural fiber appearance",
|
34 |
+
"Silk": "silk fabric texture, smooth and lustrous",
|
35 |
+
"Linen": "linen texture, natural weave pattern",
|
36 |
+
"Velvet": "velvet texture, plush surface",
|
37 |
+
"Canvas": "canvas texture, sturdy weave pattern",
|
38 |
+
"Wool": "wool texture, natural fiber appearance"
|
39 |
+
}
|
40 |
+
|
41 |
+
def enhance_prompt_for_pattern(prompt, style, fabric):
|
42 |
+
"""Add specific terms to ensure seamless, tileable patterns with style and fabric considerations."""
|
43 |
pattern_terms = [
|
44 |
"seamless pattern",
|
45 |
"tileable textile design",
|
|
|
47 |
"high-quality fabric design",
|
48 |
"continuous pattern",
|
49 |
]
|
50 |
+
|
51 |
+
enhanced_prompt = f"{prompt}, {random.choice(pattern_terms)}"
|
52 |
+
|
53 |
+
if style and style != "None":
|
54 |
+
enhanced_prompt += f", {STYLE_OPTIONS[style]}"
|
55 |
+
|
56 |
+
if fabric and fabric != "None":
|
57 |
+
enhanced_prompt += f", {FABRIC_OPTIONS[fabric]}"
|
58 |
+
|
59 |
+
enhanced_prompt += ", suitable for textile printing, high-quality fabric design, seamless edges"
|
60 |
return enhanced_prompt
|
61 |
|
62 |
+
def create_fabric_preview(image):
|
63 |
+
"""Create a fabric preview by tiling the pattern."""
|
64 |
+
# Create a 4x2 grid of the pattern
|
65 |
+
width, height = image.size
|
66 |
+
preview = Image.new('RGB', (width * 4, height * 2))
|
67 |
+
|
68 |
+
for y in range(2):
|
69 |
+
for x in range(4):
|
70 |
+
preview.paste(image, (x * width, y * height))
|
71 |
+
|
72 |
+
return preview
|
73 |
+
|
74 |
@spaces.GPU()
|
75 |
+
def infer(prompt, style, fabric, seed=42, randomize_seed=False, width=1024, height=1024,
|
76 |
num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
77 |
if randomize_seed:
|
78 |
seed = random.randint(0, MAX_SEED)
|
79 |
|
80 |
+
enhanced_prompt = enhance_prompt_for_pattern(prompt, style, fabric)
|
81 |
generator = torch.Generator().manual_seed(seed)
|
82 |
image = pipe(
|
83 |
prompt=enhanced_prompt,
|
|
|
88 |
guidance_scale=0.0
|
89 |
).images[0]
|
90 |
|
91 |
+
# Create fabric preview
|
92 |
+
fabric_preview = create_fabric_preview(image)
|
93 |
+
|
94 |
+
return image, fabric_preview, seed
|
95 |
|
96 |
examples = [
|
97 |
+
["geometric Art Deco shapes in gold and navy", "Geometric", "None"],
|
98 |
+
["delicate floral motifs with small roses and leaves", "Vintage", "Cotton"],
|
99 |
+
["abstract watercolor spots in pastel colors", "Abstract", "Silk"],
|
100 |
+
["traditional paisley design in earth tones", "Traditional", "Linen"],
|
101 |
+
["modern minimalist lines and circles", "Minimalist", "Canvas"],
|
102 |
]
|
103 |
|
104 |
# Enhanced CSS for better visual design and mobile responsiveness
|
105 |
css = """
|
106 |
#col-container {
|
107 |
margin: 0 auto;
|
108 |
+
max-width: 1200px !important;
|
109 |
padding: 20px;
|
110 |
}
|
|
|
111 |
.main-title {
|
112 |
text-align: center;
|
113 |
color: #2d3748;
|
114 |
margin-bottom: 1rem;
|
115 |
font-family: 'Poppins', sans-serif;
|
116 |
}
|
|
|
117 |
.subtitle {
|
118 |
text-align: center;
|
119 |
color: #4a5568;
|
|
|
122 |
font-size: 0.95rem;
|
123 |
line-height: 1.5;
|
124 |
}
|
|
|
125 |
.pattern-input {
|
126 |
border: 2px solid #e2e8f0;
|
127 |
border-radius: 10px;
|
|
|
130 |
font-size: 1rem;
|
131 |
transition: all 0.3s ease;
|
132 |
}
|
|
|
133 |
.pattern-input:focus {
|
134 |
border-color: #4299e1;
|
135 |
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.1);
|
136 |
}
|
|
|
137 |
.generate-button {
|
138 |
background-color: #4299e1 !important;
|
139 |
color: white !important;
|
|
|
142 |
font-weight: 600 !important;
|
143 |
transition: all 0.3s ease !important;
|
144 |
}
|
|
|
145 |
.generate-button:hover {
|
146 |
background-color: #3182ce !important;
|
147 |
transform: translateY(-1px);
|
148 |
}
|
|
|
149 |
.result-image {
|
150 |
border-radius: 12px;
|
151 |
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
152 |
margin-top: 1rem;
|
153 |
}
|
|
|
154 |
.advanced-settings {
|
155 |
margin-top: 1.5rem;
|
156 |
border: 1px solid #e2e8f0;
|
157 |
border-radius: 10px;
|
158 |
padding: 1rem;
|
159 |
}
|
160 |
+
.examples-section {
|
161 |
+
margin-top: 2rem;
|
162 |
+
padding: 1rem;
|
163 |
+
background: #f7fafc;
|
164 |
+
border-radius: 10px;
|
165 |
+
border: none;
|
166 |
+
}
|
167 |
+
.preview-section {
|
168 |
+
margin-top: 1rem;
|
169 |
+
padding: 1rem;
|
170 |
+
background: #ffffff;
|
171 |
+
border-radius: 10px;
|
172 |
+
}
|
173 |
/* Mobile Responsiveness */
|
174 |
@media (max-width: 768px) {
|
175 |
#col-container {
|
|
|
188 |
font-size: 0.9rem;
|
189 |
}
|
190 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
"""
|
192 |
|
193 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
194 |
with gr.Column(elem_id="col-container"):
|
195 |
gr.Markdown(
|
196 |
"""
|
197 |
+
# 🎨 Deradh's Professional Textile Pattern Generator
|
198 |
""",
|
199 |
elem_classes=["main-title"]
|
200 |
)
|
201 |
|
202 |
gr.Markdown(
|
203 |
"""
|
204 |
+
Create professional-grade, seamless patterns for textile manufacturing.
|
205 |
+
Design unique patterns with style and fabric texture controls,
|
206 |
+
perfect for commercial textile production and fashion design.
|
207 |
""",
|
208 |
elem_classes=["subtitle"]
|
209 |
)
|
210 |
|
211 |
with gr.Row():
|
212 |
+
with gr.Column(scale=2):
|
213 |
+
prompt = gr.Text(
|
214 |
+
label="Pattern Description",
|
215 |
+
show_label=False,
|
216 |
+
max_lines=1,
|
217 |
+
placeholder="Describe your dream pattern (e.g., 'geometric Art Deco shapes in gold and navy')",
|
218 |
+
container=False,
|
219 |
+
elem_classes=["pattern-input"]
|
220 |
+
)
|
221 |
+
|
222 |
+
with gr.Column(scale=1):
|
223 |
+
style = gr.Dropdown(
|
224 |
+
choices=list(STYLE_OPTIONS.keys()),
|
225 |
+
label="Style",
|
226 |
+
value="None"
|
227 |
+
)
|
228 |
+
|
229 |
+
with gr.Column(scale=1):
|
230 |
+
fabric = gr.Dropdown(
|
231 |
+
choices=list(FABRIC_OPTIONS.keys()),
|
232 |
+
label="Fabric Texture",
|
233 |
+
value="None"
|
234 |
+
)
|
235 |
+
|
236 |
+
with gr.Column(scale=0.5):
|
237 |
+
run_button = gr.Button(
|
238 |
+
"✨ Generate",
|
239 |
+
elem_classes=["generate-button"]
|
240 |
+
)
|
241 |
|
242 |
+
with gr.Row():
|
243 |
+
with gr.Column():
|
244 |
+
pattern = gr.Image(
|
245 |
+
label="Generated Pattern",
|
246 |
+
show_label=True,
|
247 |
+
elem_classes=["result-image"]
|
248 |
+
)
|
249 |
+
|
250 |
+
with gr.Column():
|
251 |
+
preview = gr.Image(
|
252 |
+
label="Fabric Preview",
|
253 |
+
show_label=True,
|
254 |
+
elem_classes=["result-image"]
|
255 |
+
)
|
256 |
|
257 |
with gr.Accordion("🔧 Advanced Settings", open=False):
|
258 |
with gr.Group(elem_classes=["advanced-settings"]):
|
|
|
293 |
)
|
294 |
|
295 |
with gr.Group(elem_classes=["examples-section"]):
|
|
|
296 |
gr.Examples(
|
297 |
examples=examples,
|
298 |
fn=infer,
|
299 |
+
inputs=[prompt, style, fabric],
|
300 |
+
outputs=[pattern, preview, seed],
|
301 |
+
cache_examples=True
|
302 |
)
|
303 |
|
304 |
gr.on(
|
305 |
triggers=[run_button.click, prompt.submit],
|
306 |
fn=infer,
|
307 |
+
inputs=[prompt, style, fabric, seed, randomize_seed, width, height, num_inference_steps],
|
308 |
+
outputs=[pattern, preview, seed]
|
309 |
)
|
310 |
|
311 |
demo.launch()
|