Gopalag's picture
Update app.py
670fde4 verified
raw
history blame
9.22 kB
mport gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
import io
from PIL import ImageEnhance
def get_edge_color(image):
"""
Get a random color from the edge of the image
"""
# Convert to numpy array
img_array = np.array(image)
# Get pixels from all edges
top_edge = img_array[0, :, :]
bottom_edge = img_array[-1, :, :]
left_edge = img_array[:, 0, :]
right_edge = img_array[:, -1, :]
# Combine all edge pixels
edge_pixels = np.concatenate([top_edge, bottom_edge, left_edge, right_edge])
# Pick a random edge pixel
random_edge_color = tuple(edge_pixels[random.randint(0, len(edge_pixels)-1)])
return random_edge_color
def color_match_tshirt(tshirt_image, target_color, threshold=30):
"""
Change white/near-white areas of the t-shirt to the target color
"""
# Convert to numpy array
img_array = np.array(tshirt_image)
# Create a mask for near-white pixels
white_mask = np.all(np.abs(img_array - [255, 255, 255]) < threshold, axis=2)
# Apply the new color to masked areas
img_array[white_mask] = target_color
return Image.fromarray(img_array)
def add_logo_watermark(image, logo_path='logo.png', size_percentage=0.2):
"""
Add a logo watermark to the bottom right corner
"""
# Open and resize logo
logo = Image.open(logo_path)
# Calculate new logo size (20% of main image width)
new_width = int(image.size[0] * size_percentage)
new_height = int(new_width * logo.size[1] / logo.size[0])
logo = logo.resize((new_width, new_height), Image.Resampling.LANCZOS)
# If logo has transparency, use it as mask
if logo.mode == 'RGBA':
mask = logo.split()[3]
else:
mask = None
# Calculate position (bottom right corner with padding)
position = (image.size[0] - logo.size[0] - 10,
image.size[1] - logo.size[1] - 10)
# Create a copy of the image
result = image.copy()
result.paste(logo, position, mask)
return result
def create_tshirt_preview(design_image, tshirt_color="white"):
"""
Overlay the design onto the t-shirt template with color matching
"""
# Load the template t-shirt image
tshirt = Image.open('image.jpeg')
tshirt_width, tshirt_height = tshirt.size
# Get a random edge color from the design
edge_color = get_edge_color(design_image)
# Color match the t-shirt
tshirt = color_match_tshirt(tshirt, edge_color)
# Resize design (35% of shirt width)
design_width = int(tshirt_width * 0.35)
design_height = int(design_width * design_image.size[1] / design_image.size[0])
design_image = design_image.resize((design_width, design_height), Image.Resampling.LANCZOS)
# Calculate position to center design
x = (tshirt_width - design_width) // 2
y = int(tshirt_height * 0.2)
# Create mask if design has transparency
if design_image.mode == 'RGBA':
mask = design_image.split()[3]
else:
mask = None
# Paste design onto shirt
tshirt.paste(design_image, (x, y), mask)
# Add logo watermark
tshirt = add_logo_watermark(tshirt)
return tshirt
@spaces.GPU()
def infer(prompt, style=None, tshirt_color="white", seed=42, randomize_seed=False,
width=1024, height=1024, num_inference_steps=4,
progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
enhanced_prompt = enhance_prompt_for_tshirt(prompt, style)
generator = torch.Generator().manual_seed(seed)
# Generate the design
design_image = pipe(
prompt=enhanced_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
# Add logo to design
design_image = add_logo_watermark(design_image)
# Create t-shirt preview
tshirt_preview = create_tshirt_preview(design_image, tshirt_color)
return design_image, tshirt_preview, seed
# Available t-shirt colors
TSHIRT_COLORS = {
"White": "#FFFFFF",
"Black": "#000000",
"Navy": "#000080",
"Gray": "#808080"
}
examples = [
["Cool geometric mountain landscape", "minimal", "White"],
["Vintage motorcycle with flames", "vintage", "Black"],
["flamingo in scenic forset", "realistic", "White"],
["Adventure Starts typography", "typography", "White"]
]
styles = [
"minimal",
"vintage",
"artistic",
"geometric",
"typography",
"realistic"
]
css = """
#col-container {
margin: 0 auto;
max-width: 1200px !important;
padding: 20px;
}
.main-title {
text-align: center;
color: #2d3748;
margin-bottom: 1rem;
font-family: 'Poppins', sans-serif;
}
.subtitle {
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
font-family: 'Inter', sans-serif;
font-size: 0.95rem;
line-height: 1.5;
}
.design-input {
border: 2px solid #e2e8f0;
border-radius: 10px;
padding: 12px !important;
margin-bottom: 1rem !important;
font-size: 1rem;
transition: all 0.3s ease;
}
.results-row {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
margin-top: 20px;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# 👕Deradh's T-Shirt Design Generator
""",
elem_classes=["main-title"]
)
gr.Markdown(
"""
Create unique t-shirt designs using Deradh's AI.
Describe your design idea and select a style to generate professional-quality artwork
perfect for custom t-shirts.
""",
elem_classes=["subtitle"]
)
with gr.Row():
with gr.Column(scale=2):
prompt = gr.Text(
label="Design Description",
show_label=False,
max_lines=1,
placeholder="Describe your t-shirt design idea",
container=False,
elem_classes=["design-input"]
)
with gr.Column(scale=1):
style = gr.Dropdown(
choices=[""] + styles,
value="",
label="Style",
container=False
)
with gr.Column(scale=1):
tshirt_color = gr.Dropdown(
choices=list(TSHIRT_COLORS.keys()),
value="White",
label="T-Shirt Color",
container=False
)
run_button = gr.Button(
"✨ Generate",
scale=0,
elem_classes=["generate-button"]
)
with gr.Row(elem_classes=["results-row"]):
result = gr.Image(
label="Generated Design",
show_label=True,
elem_classes=["result-image"]
)
preview = gr.Image(
label="T-Shirt Preview",
show_label=True,
elem_classes=["preview-image"]
)
with gr.Accordion("🔧 Advanced Settings", open=False):
with gr.Group():
seed = gr.Slider(
label="Design Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(
label="Randomize Design",
value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Generation Quality (Steps)",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, style, tshirt_color],
outputs=[result, preview, seed],
cache_examples=True
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, style, tshirt_color, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, preview, seed]
)
demo.launch()