Gopalag commited on
Commit
63f17a8
·
verified ·
1 Parent(s): 86f96a4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -41
app.py CHANGED
@@ -8,33 +8,59 @@ from diffusers import DiffusionPipeline
8
  dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
11
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
 
 
 
 
12
 
13
  MAX_SEED = np.iinfo(np.int32).max
14
  MAX_IMAGE_SIZE = 2048
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  @spaces.GPU()
17
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
 
18
  if randomize_seed:
19
  seed = random.randint(0, MAX_SEED)
 
 
 
 
20
  generator = torch.Generator().manual_seed(seed)
21
  image = pipe(
22
- prompt = prompt,
23
- width = width,
24
- height = height,
25
- num_inference_steps = num_inference_steps,
26
- generator = generator,
27
- guidance_scale=0.0
28
- ).images[0]
 
29
  return image, seed
30
-
 
31
  examples = [
32
- "a tiny astronaut hatching from an egg on the moon",
33
- "a cat holding a sign that says hello world",
34
- "an anime illustration of a wiener schnitzel",
 
 
35
  ]
36
 
37
- css="""
38
  #col-container {
39
  margin: 0 auto;
40
  max-width: 520px;
@@ -42,29 +68,28 @@ css="""
42
  """
43
 
44
  with gr.Blocks(css=css) as demo:
45
-
46
  with gr.Column(elem_id="col-container"):
47
- gr.Markdown(f"""# FLUX.1 [schnell]
48
- 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
49
- [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
 
 
 
50
  """)
51
 
52
  with gr.Row():
53
-
54
  prompt = gr.Text(
55
- label="Prompt",
56
  show_label=False,
57
  max_lines=1,
58
- placeholder="Enter your prompt",
59
  container=False,
60
  )
61
-
62
- run_button = gr.Button("Run", scale=0)
63
 
64
- result = gr.Image(label="Result", show_label=False)
65
 
66
  with gr.Accordion("Advanced Settings", open=False):
67
-
68
  seed = gr.Slider(
69
  label="Seed",
70
  minimum=0,
@@ -72,11 +97,9 @@ with gr.Blocks(css=css) as demo:
72
  step=1,
73
  value=0,
74
  )
75
-
76
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
77
 
78
  with gr.Row():
79
-
80
  width = gr.Slider(
81
  label="Width",
82
  minimum=256,
@@ -84,7 +107,6 @@ with gr.Blocks(css=css) as demo:
84
  step=32,
85
  value=1024,
86
  )
87
-
88
  height = gr.Slider(
89
  label="Height",
90
  minimum=256,
@@ -94,8 +116,6 @@ with gr.Blocks(css=css) as demo:
94
  )
95
 
96
  with gr.Row():
97
-
98
-
99
  num_inference_steps = gr.Slider(
100
  label="Number of inference steps",
101
  minimum=1,
@@ -105,18 +125,18 @@ with gr.Blocks(css=css) as demo:
105
  )
106
 
107
  gr.Examples(
108
- examples = examples,
109
- fn = infer,
110
- inputs = [prompt],
111
- outputs = [result, seed],
112
  cache_examples="lazy"
113
  )
114
-
115
- gr.on(
116
- triggers=[run_button.click, prompt.submit],
117
- fn = infer,
118
- inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
119
- outputs = [result, seed]
120
- )
121
 
122
  demo.launch()
 
8
  dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
11
+ # Initialize the model
12
+ pipe = DiffusionPipeline.from_pretrained(
13
+ "black-forest-labs/FLUX.1-schnell",
14
+ torch_dtype=dtype
15
+ ).to(device)
16
 
17
  MAX_SEED = np.iinfo(np.int32).max
18
  MAX_IMAGE_SIZE = 2048
19
 
20
+ # Pattern-specific prompt engineering
21
+ def enhance_prompt_for_pattern(prompt):
22
+ """Add specific terms to ensure seamless, tileable patterns."""
23
+ pattern_terms = [
24
+ "seamless pattern",
25
+ "tileable textile design",
26
+ "repeating pattern",
27
+ "high-quality fabric design",
28
+ "continuous pattern",
29
+ ]
30
+ enhanced_prompt = f"{prompt}, {random.choice(pattern_terms)}, suitable for textile printing, high-quality fabric design, seamless edges"
31
+ return enhanced_prompt
32
+
33
  @spaces.GPU()
34
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024,
35
+ num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
+
39
+ # Enhance the prompt for pattern generation
40
+ enhanced_prompt = enhance_prompt_for_pattern(prompt)
41
+
42
  generator = torch.Generator().manual_seed(seed)
43
  image = pipe(
44
+ prompt=enhanced_prompt,
45
+ width=width,
46
+ height=height,
47
+ num_inference_steps=num_inference_steps,
48
+ generator=generator,
49
+ guidance_scale=0.0
50
+ ).images[0]
51
+
52
  return image, seed
53
+
54
+ # Example prompts specifically for pattern generation
55
  examples = [
56
+ "geometric Art Deco shapes in gold and navy",
57
+ "delicate floral motifs with small roses and leaves",
58
+ "abstract watercolor spots in pastel colors",
59
+ "traditional paisley design in earth tones",
60
+ "modern minimalist lines and circles",
61
  ]
62
 
63
+ css = """
64
  #col-container {
65
  margin: 0 auto;
66
  max-width: 520px;
 
68
  """
69
 
70
  with gr.Blocks(css=css) as demo:
 
71
  with gr.Column(elem_id="col-container"):
72
+ gr.Markdown("""
73
+ # Deradh's AI Pattern Master
74
+ ### Create seamless, tileable patterns for high-quality textile designs
75
+
76
+ This tool specializes in generating patterns that can be used for fabric printing and textile design.
77
+ Each pattern is optimized to be seamless and repeatable.
78
  """)
79
 
80
  with gr.Row():
 
81
  prompt = gr.Text(
82
+ label="Pattern Description",
83
  show_label=False,
84
  max_lines=1,
85
+ placeholder="Describe your desired pattern (e.g., 'geometric Art Deco shapes in gold and navy')",
86
  container=False,
87
  )
88
+ run_button = gr.Button("Generate Pattern", scale=0)
 
89
 
90
+ result = gr.Image(label="Generated Pattern", show_label=True)
91
 
92
  with gr.Accordion("Advanced Settings", open=False):
 
93
  seed = gr.Slider(
94
  label="Seed",
95
  minimum=0,
 
97
  step=1,
98
  value=0,
99
  )
 
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
 
102
  with gr.Row():
 
103
  width = gr.Slider(
104
  label="Width",
105
  minimum=256,
 
107
  step=32,
108
  value=1024,
109
  )
 
110
  height = gr.Slider(
111
  label="Height",
112
  minimum=256,
 
116
  )
117
 
118
  with gr.Row():
 
 
119
  num_inference_steps = gr.Slider(
120
  label="Number of inference steps",
121
  minimum=1,
 
125
  )
126
 
127
  gr.Examples(
128
+ examples=examples,
129
+ fn=infer,
130
+ inputs=[prompt],
131
+ outputs=[result, seed],
132
  cache_examples="lazy"
133
  )
134
+
135
+ gr.on(
136
+ triggers=[run_button.click, prompt.submit],
137
+ fn=infer,
138
+ inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
139
+ outputs=[result, seed]
140
+ )
141
 
142
  demo.launch()