File size: 1,275 Bytes
9f2b3ad
 
 
 
 
 
 
ff5810a
9f2b3ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54b3f5b
53e5c1f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
import torch
import torchvision
import numpy as np
from PIL import Image

# Load model weights
model = torch.hub.load('ultralytics/yolov5', 'custom', "model_weights/datasets_1000_41class.pt")

# Define a yolo prediction function
def yolo(im, size=640):
    g = (size / max(im.size))  # gain
    im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS)  # resize

    results = model(im)  # inference
    results.render()  # updates results.imgs with boxes and labels
    return Image.fromarray(results.imgs[0])


inputs = gr.inputs.Image(type='pil', label="Original Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")

title = "BandiCount: Detecting Australian native animal species"
description = "BandiCount: Detecting Australian native animal species in NSW national parks, using object detection. Upload an image or click an example image to use."
article = ""

examples = [['data/BrushtailPossum.jpg'], ['data/Eagle.jpg'], ['data/Macropod.jpg'], ['data/cat.jpg'], ['data/echidna.gif'], ['data/fantail.png'], ['data/ibis.jpg'], ['data/koala1.jpeg'], ['data/koala2.jpg']]
gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True)