Spaces:
Runtime error
Runtime error
File size: 10,180 Bytes
be001c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os, subprocess
import gradio as gr
import shutil, time, torch, gc
from mega import Mega
from datetime import datetime
import pandas as pd
import os, sys, subprocess, numpy as np
from pydub import AudioSegment
try:
from whisperspeech.pipeline import Pipeline as TTS
whisperspeak_on = True
except:
whisperspeak_on = False
# Class to handle caching model urls from a spreadsheet
class CachedModels:
def __init__(self):
csv_url = "https://docs.google.com/spreadsheets/d/1tAUaQrEHYgRsm1Lvrnj14HFHDwJWl0Bd9x0QePewNco/export?format=csv&gid=1977693859"
if os.path.exists("spreadsheet.csv"):
self.cached_data = pd.read_csv("spreadsheet.csv")
else:
self.cached_data = pd.read_csv(csv_url)
self.cached_data.to_csv("spreadsheet.csv", index=False)
# Cache model urls
self.models = {}
for _, row in self.cached_data.iterrows():
filename = row['Filename']
url = None
for value in row.values:
if isinstance(value, str) and "huggingface" in value:
url = value
break
if url:
self.models[filename] = url
# Get cached model urls
def get_models(self):
return self.models
def show(path,ext,on_error=None):
try:
return list(filter(lambda x: x.endswith(ext), os.listdir(path)))
except:
return on_error
def run_subprocess(command):
try:
subprocess.run(command, check=True)
return True, None
except Exception as e:
return False, e
def download_from_url(url=None, model=None):
if not url:
try:
url = model[f'{model}']
except:
gr.Warning("Failed")
return ''
if model == '':
try:
model = url.split('/')[-1].split('?')[0]
except:
gr.Warning('Please name the model')
return
model = model.replace('.pth', '').replace('.index', '').replace('.zip', '')
url = url.replace('/blob/main/', '/resolve/main/').strip()
for directory in ["downloads", "unzips","zip"]:
#shutil.rmtree(directory, ignore_errors=True)
os.makedirs(directory, exist_ok=True)
try:
if url.endswith('.pth'):
subprocess.run(["wget", url, "-O", f'assets/weights/{model}.pth'])
elif url.endswith('.index'):
os.makedirs(f'logs/{model}', exist_ok=True)
subprocess.run(["wget", url, "-O", f'logs/{model}/added_{model}.index'])
elif url.endswith('.zip'):
subprocess.run(["wget", url, "-O", f'downloads/{model}.zip'])
else:
if "drive.google.com" in url:
url = url.split('/')[0]
subprocess.run(["gdown", url, "--fuzzy", "-O", f'downloads/{model}'])
elif "mega.nz" in url:
Mega().download_url(url, 'downloads')
else:
subprocess.run(["wget", url, "-O", f'downloads/{model}'])
downloaded_file = next((f for f in os.listdir("downloads")), None)
if downloaded_file:
if downloaded_file.endswith(".zip"):
shutil.unpack_archive(f'downloads/{downloaded_file}', "unzips", 'zip')
for root, _, files in os.walk('unzips'):
for file in files:
file_path = os.path.join(root, file)
if file.endswith(".index"):
os.makedirs(f'logs/{model}', exist_ok=True)
shutil.copy2(file_path, f'logs/{model}')
elif file.endswith(".pth") and "G_" not in file and "D_" not in file:
shutil.copy(file_path, f'assets/weights/{model}.pth')
elif downloaded_file.endswith(".pth"):
shutil.copy(f'downloads/{downloaded_file}', f'assets/weights/{model}.pth')
elif downloaded_file.endswith(".index"):
os.makedirs(f'logs/{model}', exist_ok=True)
shutil.copy(f'downloads/{downloaded_file}', f'logs/{model}/added_{model}.index')
else:
gr.Warning("Failed to download file")
return 'Failed'
gr.Info("Done")
except Exception as e:
gr.Warning(f"There's been an error: {str(e)}")
finally:
shutil.rmtree("downloads", ignore_errors=True)
shutil.rmtree("unzips", ignore_errors=True)
shutil.rmtree("zip", ignore_errors=True)
return 'Done'
def speak(audio, text):
print(f"({audio}, {text})")
current_dir = os.getcwd()
os.chdir('./gpt_sovits_demo')
process = subprocess.Popen([
"python", "./zero.py",
"--input_file", audio,
"--audio_lang", "English",
"--text", text,
"--text_lang", "English"
], stdout=subprocess.PIPE, text=True)
for line in process.stdout:
line = line.strip()
if "All keys matched successfully" in line:
continue
if line.startswith("(") and line.endswith(")"):
path, finished = line[1:-1].split(", ")
if finished:
os.chdir(current_dir)
return path
os.chdir(current_dir)
return None
def whisperspeak(text, tts_lang, cps=10.5):
if whisperspeak_on is None: return None
if not "tts_pipe" in locals(): tts_pipe = TTS(t2s_ref='whisperspeech/whisperspeech:t2s-v1.95-small-8lang.model', s2a_ref='whisperspeech/whisperspeech:s2a-v1.95-medium-7lang.model')
from fastprogress.fastprogress import master_bar, progress_bar
master_bar.update = lambda *args, **kwargs: None
progress_bar.update = lambda *args, **kwargs: None
output = f"audios/tts_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
tts_pipe.generate_to_file(output, text, cps=cps, lang=tts_lang)
return os.path.abspath(output)
def stereo_process(audio1,audio2,choice):
audio = audio1 if choice == "Input" else audio2
print(audio)
sample_rate, audio_array = audio
if len(audio_array.shape) == 1:
audio_bytes = audio_array.tobytes()
segment = AudioSegment(
data=audio_bytes,
sample_width=audio_array.dtype.itemsize, # 2 bytes for int16
frame_rate=sample_rate, # Use the sample rate from your tuple
channels=1 # Adjust if your audio has more channels
)
samples = np.array(segment.get_array_of_samples())
delay_samples = int(segment.frame_rate * (0.6 / 1000.0))
left_channel = np.zeros_like(samples)
right_channel = samples
left_channel[delay_samples:] = samples[:-delay_samples]
stereo_samples = np.column_stack((left_channel, right_channel))
return (sample_rate, stereo_samples.astype(np.int16))
else:
return audio
def sr_process(audio1, audio2, choice):
torch.cuda.empty_cache()
gc.collect()
if "tts_pipe" in locals(): del tts_pipe
audio = audio1 if choice == "Input" else audio2
sample_rate, audio_array = audio
audio_segment = AudioSegment(
audio_array.tobytes(),
frame_rate=sample_rate,
sample_width=audio_array.dtype.itemsize,
channels=1 if len(audio_array.shape) == 1 else 2
)
temp_file = os.path.join('TEMP', f'{choice}_{datetime.now().strftime("%Y%m%d_%H%M%S")}.wav')
audio_segment.export(temp_file, format="wav")
output_folder = "SR"
model_name = "speech"
suffix = "_ldm"
guidance_scale = 2.7
ddim_steps = 50
venv_dir = "audiosr"
def split_audio(input_file, output_folder, chunk_duration=5.12):
os.makedirs(output_folder, exist_ok=True)
ffmpeg_command = f"ffmpeg -i {input_file} -f segment -segment_time {chunk_duration} -c:a pcm_s16le {output_folder}/out%03d.wav"
subprocess.run(ffmpeg_command, shell=True, check=True)
def create_file_list(output_folder):
file_list = os.path.join(output_folder, "file_list.txt")
with open(file_list, "w") as f:
for filename in sorted(os.listdir(output_folder)):
if filename.endswith(".wav"):
f.write(os.path.join(output_folder, filename) + "\n")
return file_list
def run_audiosr(file_list, model_name, suffix, guidance_scale, ddim_steps, output_folder, venv_dir):
command = f"{venv_dir}/bin/python -m audiosr --input_file_list {file_list} --model_name {model_name} --suffix {suffix} --guidance_scale {guidance_scale} --ddim_steps {ddim_steps} --save_path {output_folder}"
try:
subprocess.run(command, shell=True, check=True, stderr=subprocess.PIPE)
except subprocess.CalledProcessError as e:
print(f"Error running audiosr: {e.stderr.decode()}")
split_audio(temp_file, output_folder)
file_list = create_file_list(output_folder)
run_audiosr(file_list, model_name, suffix, guidance_scale, ddim_steps, output_folder, venv_dir)
output_file = None
time.sleep(1)
processed_chunks = []
for root, dirs, files in os.walk(output_folder):
for file in sorted(files):
if file.startswith("out") and file.endswith(f"{suffix}.wav"):
chunk_file = os.path.join(root, file)
processed_chunks.append(AudioSegment.from_wav(chunk_file))
if processed_chunks:
merged_audio = sum(processed_chunks)
output_file = os.path.join(output_folder, f"{choice}_merged{suffix}.wav")
merged_audio.export(output_file, format="wav")
display_file = AudioSegment.from_file(output_file)
sample_rate = display_file.frame_rate
audio_array = np.array(display_file.get_array_of_samples())
return (sample_rate, audio_array)
else:
print(f"Error: Could not find any processed audio chunks in {output_folder}")
return None
|