Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,10 +14,10 @@ logging.basicConfig(level=logging.INFO)
|
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
class DatasetManager:
|
17 |
-
def __init__(self,
|
18 |
-
self.dataset_name = dataset_name
|
19 |
self.local_images_dir = local_images_dir
|
20 |
self.drive = None
|
|
|
21 |
|
22 |
# Create local directory if it doesn't exist
|
23 |
os.makedirs(local_images_dir, exist_ok=True)
|
@@ -43,12 +43,27 @@ class DatasetManager:
|
|
43 |
file_list = self.drive.ListFile({'q': query}).GetList()
|
44 |
|
45 |
if not file_list:
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
renamed_files = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
for i, file in enumerate(tqdm(file_list, desc="Downloading files")):
|
50 |
if file['mimeType'].startswith('image/'):
|
51 |
-
new_filename = f"{naming_convention}_{i+1}.jpg"
|
52 |
file_path = os.path.join(self.local_images_dir, new_filename)
|
53 |
|
54 |
# Download file
|
@@ -61,7 +76,8 @@ class DatasetManager:
|
|
61 |
renamed_files.append({
|
62 |
'file_path': file_path,
|
63 |
'original_name': file['title'],
|
64 |
-
'new_name': new_filename
|
|
|
65 |
})
|
66 |
except Exception as e:
|
67 |
logger.error(f"Error processing image {file['title']}: {str(e)}")
|
@@ -72,23 +88,32 @@ class DatasetManager:
|
|
72 |
except Exception as e:
|
73 |
return False, f"Error downloading files: {str(e)}", []
|
74 |
|
75 |
-
def update_huggingface_dataset(self,
|
76 |
-
"""Update
|
77 |
try:
|
78 |
# Create a DataFrame with the file information
|
79 |
df = pd.DataFrame(renamed_files)
|
80 |
|
81 |
-
# Create a Hugging Face Dataset
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Push to Hugging Face Hub
|
85 |
-
|
86 |
|
87 |
-
return True, f"Successfully updated dataset '{dataset_name}' with {len(renamed_files)} images"
|
88 |
except Exception as e:
|
89 |
return False, f"Error updating Hugging Face dataset: {str(e)}"
|
90 |
|
91 |
-
def process_pipeline(folder_id, naming_convention
|
92 |
"""Main pipeline to process images and update dataset"""
|
93 |
manager = DatasetManager()
|
94 |
|
@@ -103,33 +128,27 @@ def process_pipeline(folder_id, naming_convention, dataset_name):
|
|
103 |
return message
|
104 |
|
105 |
# Step 3: Update Hugging Face dataset
|
106 |
-
|
107 |
-
|
108 |
-
return f"{message}\n{hf_message}"
|
109 |
-
|
110 |
-
return message
|
111 |
|
112 |
# Gradio interface
|
113 |
demo = gr.Interface(
|
114 |
fn=process_pipeline,
|
115 |
inputs=[
|
116 |
gr.Textbox(
|
117 |
-
label="Google Drive Folder ID",
|
118 |
-
placeholder="Enter the
|
|
|
119 |
),
|
120 |
gr.Textbox(
|
121 |
label="Naming Convention",
|
122 |
placeholder="e.g., card",
|
123 |
-
value="
|
124 |
-
),
|
125 |
-
gr.Textbox(
|
126 |
-
label="Hugging Face Dataset Name (Optional)",
|
127 |
-
placeholder="username/dataset-name"
|
128 |
)
|
129 |
],
|
130 |
outputs=gr.Textbox(label="Status"),
|
131 |
-
title="
|
132 |
-
description="Download card images from Google Drive and add them to
|
133 |
)
|
134 |
|
135 |
if __name__ == "__main__":
|
|
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
class DatasetManager:
|
17 |
+
def __init__(self, local_images_dir="downloaded_cards"):
|
|
|
18 |
self.local_images_dir = local_images_dir
|
19 |
self.drive = None
|
20 |
+
self.dataset_name = "GotThatData/sports-cards"
|
21 |
|
22 |
# Create local directory if it doesn't exist
|
23 |
os.makedirs(local_images_dir, exist_ok=True)
|
|
|
43 |
file_list = self.drive.ListFile({'q': query}).GetList()
|
44 |
|
45 |
if not file_list:
|
46 |
+
# Try to get single file if folder is empty
|
47 |
+
file = self.drive.CreateFile({'id': drive_folder_id})
|
48 |
+
if file:
|
49 |
+
file_list = [file]
|
50 |
+
else:
|
51 |
+
return False, "No files found with the specified ID", []
|
52 |
|
53 |
renamed_files = []
|
54 |
+
existing_dataset = None
|
55 |
+
try:
|
56 |
+
existing_dataset = load_dataset(self.dataset_name)
|
57 |
+
logger.info(f"Loaded existing dataset: {self.dataset_name}")
|
58 |
+
# Get the current count of images to continue numbering
|
59 |
+
start_index = len(existing_dataset['train']) if 'train' in existing_dataset else 0
|
60 |
+
except Exception as e:
|
61 |
+
logger.info(f"No existing dataset found, starting fresh: {str(e)}")
|
62 |
+
start_index = 0
|
63 |
+
|
64 |
for i, file in enumerate(tqdm(file_list, desc="Downloading files")):
|
65 |
if file['mimeType'].startswith('image/'):
|
66 |
+
new_filename = f"{naming_convention}_{start_index + i + 1}.jpg"
|
67 |
file_path = os.path.join(self.local_images_dir, new_filename)
|
68 |
|
69 |
# Download file
|
|
|
76 |
renamed_files.append({
|
77 |
'file_path': file_path,
|
78 |
'original_name': file['title'],
|
79 |
+
'new_name': new_filename,
|
80 |
+
'image': file_path # Adding image column for dataset
|
81 |
})
|
82 |
except Exception as e:
|
83 |
logger.error(f"Error processing image {file['title']}: {str(e)}")
|
|
|
88 |
except Exception as e:
|
89 |
return False, f"Error downloading files: {str(e)}", []
|
90 |
|
91 |
+
def update_huggingface_dataset(self, renamed_files):
|
92 |
+
"""Update the sports-cards dataset with new images"""
|
93 |
try:
|
94 |
# Create a DataFrame with the file information
|
95 |
df = pd.DataFrame(renamed_files)
|
96 |
|
97 |
+
# Create a Hugging Face Dataset from the new files
|
98 |
+
new_dataset = Dataset.from_pandas(df)
|
99 |
+
|
100 |
+
try:
|
101 |
+
# Try to load existing dataset
|
102 |
+
existing_dataset = load_dataset(self.dataset_name)
|
103 |
+
# Concatenate with existing dataset if it exists
|
104 |
+
if 'train' in existing_dataset:
|
105 |
+
new_dataset = concatenate_datasets([existing_dataset['train'], new_dataset])
|
106 |
+
except Exception:
|
107 |
+
logger.info("Creating new dataset")
|
108 |
|
109 |
# Push to Hugging Face Hub
|
110 |
+
new_dataset.push_to_hub(self.dataset_name, split="train")
|
111 |
|
112 |
+
return True, f"Successfully updated dataset '{self.dataset_name}' with {len(renamed_files)} new images"
|
113 |
except Exception as e:
|
114 |
return False, f"Error updating Hugging Face dataset: {str(e)}"
|
115 |
|
116 |
+
def process_pipeline(folder_id, naming_convention):
|
117 |
"""Main pipeline to process images and update dataset"""
|
118 |
manager = DatasetManager()
|
119 |
|
|
|
128 |
return message
|
129 |
|
130 |
# Step 3: Update Hugging Face dataset
|
131 |
+
success, hf_message = manager.update_huggingface_dataset(renamed_files)
|
132 |
+
return f"{message}\n{hf_message}"
|
|
|
|
|
|
|
133 |
|
134 |
# Gradio interface
|
135 |
demo = gr.Interface(
|
136 |
fn=process_pipeline,
|
137 |
inputs=[
|
138 |
gr.Textbox(
|
139 |
+
label="Google Drive File/Folder ID",
|
140 |
+
placeholder="Enter the ID from your Google Drive URL",
|
141 |
+
value="151VOxPO91mg0C3ORiioGUd4hogzP1ujm" # Pre-filled with provided ID
|
142 |
),
|
143 |
gr.Textbox(
|
144 |
label="Naming Convention",
|
145 |
placeholder="e.g., card",
|
146 |
+
value="sports_card"
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
],
|
149 |
outputs=gr.Textbox(label="Status"),
|
150 |
+
title="Sports Cards Dataset Processor",
|
151 |
+
description="Download card images from Google Drive and add them to the sports-cards dataset"
|
152 |
)
|
153 |
|
154 |
if __name__ == "__main__":
|