GotThatData commited on
Commit
9cc14fb
·
verified ·
1 Parent(s): ca403c3
Files changed (1) hide show
  1. app.py +50 -229
app.py CHANGED
@@ -5,164 +5,18 @@ import gradio as gr
5
  from datasets import load_dataset, Dataset
6
  import pandas as pd
7
  from PIL import Image
8
- import pytesseract
9
- import cv2
10
- import numpy as np
11
- import tensorflow as tf
12
- from transformers import LayoutLMv2Processor, LayoutLMv2ForSequenceClassification
13
- import torch
14
  from tqdm import tqdm
15
  import logging
16
- import re
17
 
18
  # Set up logging
19
  logging.basicConfig(level=logging.INFO)
20
  logger = logging.getLogger(__name__)
21
 
22
- class CardPreprocessor:
23
- def __init__(self):
24
- # Initialize OCR and models
25
- self.processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
26
- self.ocr_threshold = 0.5
27
-
28
- def extract_text_regions(self, image):
29
- """Extract text regions from the image using OCR"""
30
- try:
31
- # Convert PIL Image to cv2 format
32
- img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
33
-
34
- # Preprocess image for better OCR
35
- gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
36
- blurred = cv2.GaussianBlur(gray, (5, 5), 0)
37
- thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
38
-
39
- # Perform OCR
40
- text = pytesseract.image_to_data(thresh, output_type=pytesseract.Output.DICT)
41
-
42
- # Extract relevant information
43
- extracted_info = {
44
- 'player_name': None,
45
- 'team': None,
46
- 'year': None,
47
- 'card_number': None,
48
- 'brand': None,
49
- 'stats': []
50
- }
51
-
52
- # Process OCR results
53
- for i, word in enumerate(text['text']):
54
- if word.strip():
55
- conf = int(text['conf'][i])
56
- if conf > 50: # Filter low-confidence detections
57
- # Try to identify year
58
- year_match = re.search(r'19[0-9]{2}|20[0-2][0-9]', word)
59
- if year_match:
60
- extracted_info['year'] = year_match.group()
61
-
62
- # Try to identify card number
63
- card_num_match = re.search(r'#\d+|\d+/\d+', word)
64
- if card_num_match:
65
- extracted_info['card_number'] = card_num_match.group()
66
-
67
- # Look for common card brands
68
- brands = ['topps', 'upper deck', 'panini', 'fleer', 'bowman']
69
- if word.lower() in brands:
70
- extracted_info['brand'] = word.lower()
71
-
72
- # Look for statistics (numbers with common sports stats patterns)
73
- stats_match = re.search(r'\d+\s*(?:HR|RBI|AVG|YDS|TD)', word)
74
- if stats_match:
75
- extracted_info['stats'].append(stats_match.group())
76
-
77
- return extracted_info
78
-
79
- except Exception as e:
80
- logger.error(f"Error in OCR processing: {str(e)}")
81
- return None
82
-
83
- def analyze_card_condition(self, image):
84
- """Analyze the physical condition of the card"""
85
- try:
86
- # Convert PIL Image to cv2 format
87
- img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
88
-
89
- # Edge detection for corner and edge analysis
90
- edges = cv2.Canny(img_cv, 100, 200)
91
-
92
- # Analyze corners
93
- corner_regions = {
94
- 'top_left': edges[0:50, 0:50],
95
- 'top_right': edges[0:50, -50:],
96
- 'bottom_left': edges[-50:, 0:50],
97
- 'bottom_right': edges[-50:, -50:]
98
- }
99
-
100
- corner_scores = {k: np.mean(v) for k, v in corner_regions.items()}
101
-
102
- # Analyze centering
103
- height, width = img_cv.shape[:2]
104
- center_x = width // 2
105
- center_y = height // 2
106
-
107
- # Calculate centering score
108
- centering_score = self.calculate_centering(img_cv, center_x, center_y)
109
-
110
- condition_info = {
111
- 'corner_scores': corner_scores,
112
- 'centering_score': centering_score,
113
- 'overall_condition': self.calculate_overall_condition(corner_scores, centering_score)
114
- }
115
-
116
- return condition_info
117
-
118
- except Exception as e:
119
- logger.error(f"Error in condition analysis: {str(e)}")
120
- return None
121
-
122
- def calculate_centering(self, image, center_x, center_y):
123
- """Calculate the centering score of the card"""
124
- try:
125
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
126
- edges = cv2.Canny(gray, 50, 150)
127
-
128
- # Find contours
129
- contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
130
-
131
- if contours:
132
- # Find the largest contour (assumed to be the card)
133
- main_contour = max(contours, key=cv2.contourArea)
134
- x, y, w, h = cv2.boundingRect(main_contour)
135
-
136
- # Calculate centering scores
137
- x_score = abs(0.5 - (x + w/2) / image.shape[1])
138
- y_score = abs(0.5 - (y + h/2) / image.shape[0])
139
-
140
- return 1 - (x_score + y_score) / 2
141
-
142
- return None
143
-
144
- except Exception as e:
145
- logger.error(f"Error in centering calculation: {str(e)}")
146
- return None
147
-
148
- def calculate_overall_condition(self, corner_scores, centering_score):
149
- """Calculate overall condition score"""
150
- if corner_scores and centering_score:
151
- corner_avg = sum(corner_scores.values()) / len(corner_scores)
152
- return (corner_avg + centering_score) / 2
153
- return None
154
-
155
- def detect_orientation(self, image):
156
- """Detect if the card is portrait or landscape"""
157
- width, height = image.size
158
- return 'portrait' if height > width else 'landscape'
159
-
160
  class DatasetManager:
161
  def __init__(self, local_images_dir="downloaded_cards"):
162
  self.local_images_dir = local_images_dir
163
  self.drive = None
164
  self.dataset_name = "GotThatData/sports-cards"
165
- self.preprocessor = CardPreprocessor()
166
 
167
  # Create local directory if it doesn't exist
168
  os.makedirs(local_images_dir, exist_ok=True)
@@ -171,47 +25,16 @@ class DatasetManager:
171
  """Authenticate with Google Drive"""
172
  try:
173
  gauth = GoogleAuth()
 
 
174
  gauth.LocalWebserverAuth()
175
  self.drive = GoogleDrive(gauth)
176
  return True, "Successfully authenticated with Google Drive"
177
  except Exception as e:
178
  return False, f"Authentication failed: {str(e)}"
179
 
180
- def process_image(self, image_path):
181
- """Process a single image and extract information"""
182
- try:
183
- with Image.open(image_path) as img:
184
- # Extract text information
185
- text_info = self.preprocessor.extract_text_regions(img)
186
-
187
- # Analyze card condition
188
- condition_info = self.preprocessor.analyze_card_condition(img)
189
-
190
- # Get orientation
191
- orientation = self.preprocessor.detect_orientation(img)
192
-
193
- return {
194
- 'text_info': text_info,
195
- 'condition_info': condition_info,
196
- 'orientation': orientation
197
- }
198
- except Exception as e:
199
- logger.error(f"Error processing image {image_path}: {str(e)}")
200
- return None
201
-
202
- def generate_filename(self, info):
203
- """Generate filename based on extracted information"""
204
- year = info['text_info'].get('year', 'unknown_year')
205
- brand = info['text_info'].get('brand', 'unknown_brand')
206
- number = info['text_info'].get('card_number', '').replace('#', '').replace('/', '_')
207
-
208
- if not number:
209
- number = 'unknown_number'
210
-
211
- return f"sports_card_{year}_{brand}_{number}"
212
-
213
- def download_and_rename_files(self, drive_folder_id):
214
- """Download files from Google Drive and process them"""
215
  if not self.drive:
216
  return False, "Google Drive not authenticated", []
217
 
@@ -221,54 +44,57 @@ class DatasetManager:
221
  file_list = self.drive.ListFile({'q': query}).GetList()
222
 
223
  if not file_list:
 
224
  file = self.drive.CreateFile({'id': drive_folder_id})
225
  if file:
226
  file_list = [file]
227
  else:
228
  return False, "No files found with the specified ID", []
229
 
230
- processed_files = []
231
- for i, file in enumerate(tqdm(file_list, desc="Processing files")):
 
 
 
 
 
 
 
 
 
232
  if file['mimeType'].startswith('image/'):
233
- temp_path = os.path.join(self.local_images_dir, f"temp_{i}.jpg")
 
234
 
235
  # Download file
236
- file.GetContentFile(temp_path)
237
 
238
- # Process image
239
- info = self.process_image(temp_path)
240
- if info:
241
- # Generate filename based on extracted info
242
- base_filename = self.generate_filename(info)
243
- new_filename = f"{base_filename}.jpg"
244
- final_path = os.path.join(self.local_images_dir, new_filename)
245
-
246
- # Rename file
247
- os.rename(temp_path, final_path)
248
-
249
- processed_files.append({
250
- 'file_path': final_path,
251
  'original_name': file['title'],
252
  'new_name': new_filename,
253
- 'image': final_path,
254
- 'extracted_info': info['text_info'],
255
- 'condition': info['condition_info'],
256
- 'orientation': info['orientation']
257
  })
258
- else:
259
- os.remove(temp_path)
 
 
260
 
261
- return True, f"Successfully processed {len(processed_files)} images", processed_files
262
  except Exception as e:
263
- return False, f"Error processing files: {str(e)}", []
264
 
265
- def update_huggingface_dataset(self, processed_files):
266
- """Update the sports-cards dataset with processed images"""
267
  try:
268
  # Create a DataFrame with the file information
269
- df = pd.DataFrame(processed_files)
270
 
271
- # Create a Hugging Face Dataset from the new files
272
  new_dataset = Dataset.from_pandas(df)
273
 
274
  try:
@@ -283,11 +109,11 @@ class DatasetManager:
283
  # Push to Hugging Face Hub
284
  new_dataset.push_to_hub(self.dataset_name, split="train")
285
 
286
- return True, f"Successfully updated dataset '{self.dataset_name}' with {len(processed_files)} processed images"
287
  except Exception as e:
288
  return False, f"Error updating Hugging Face dataset: {str(e)}"
289
 
290
- def process_pipeline(folder_id):
291
  """Main pipeline to process images and update dataset"""
292
  manager = DatasetManager()
293
 
@@ -296,24 +122,14 @@ def process_pipeline(folder_id):
296
  if not auth_success:
297
  return auth_message
298
 
299
- # Step 2: Download and process files
300
- success, message, processed_files = manager.download_and_rename_files(folder_id)
301
  if not success:
302
  return message
303
 
304
  # Step 3: Update Hugging Face dataset
305
- success, hf_message = manager.update_huggingface_dataset(processed_files)
306
-
307
- # Create detailed report
308
- report = f"{message}\n{hf_message}\n\nDetailed Processing Report:\n"
309
- for file in processed_files:
310
- report += f"\nFile: {file['new_name']}\n"
311
- report += f"Extracted Info: {file['extracted_info']}\n"
312
- report += f"Condition Score: {file['condition']['overall_condition']:.2f}\n"
313
- report += f"Orientation: {file['orientation']}\n"
314
- report += "-" * 50
315
-
316
- return report
317
 
318
  # Gradio interface
319
  demo = gr.Interface(
@@ -323,11 +139,16 @@ demo = gr.Interface(
323
  label="Google Drive File/Folder ID",
324
  placeholder="Enter the ID from your Google Drive URL",
325
  value="151VOxPO91mg0C3ORiioGUd4hogzP1ujm"
 
 
 
 
 
326
  )
327
  ],
328
- outputs=gr.Textbox(label="Processing Report"),
329
- title="AI-Powered Sports Cards Processor",
330
- description="Upload card images to automatically extract information, analyze condition, and add to dataset"
331
  )
332
 
333
  if __name__ == "__main__":
 
5
  from datasets import load_dataset, Dataset
6
  import pandas as pd
7
  from PIL import Image
 
 
 
 
 
 
8
  from tqdm import tqdm
9
  import logging
 
10
 
11
  # Set up logging
12
  logging.basicConfig(level=logging.INFO)
13
  logger = logging.getLogger(__name__)
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  class DatasetManager:
16
  def __init__(self, local_images_dir="downloaded_cards"):
17
  self.local_images_dir = local_images_dir
18
  self.drive = None
19
  self.dataset_name = "GotThatData/sports-cards"
 
20
 
21
  # Create local directory if it doesn't exist
22
  os.makedirs(local_images_dir, exist_ok=True)
 
25
  """Authenticate with Google Drive"""
26
  try:
27
  gauth = GoogleAuth()
28
+ # Specify the path to client_secrets.json
29
+ gauth.settings['client_config_file'] = 'client_secrets.json' # Make sure this matches your file path
30
  gauth.LocalWebserverAuth()
31
  self.drive = GoogleDrive(gauth)
32
  return True, "Successfully authenticated with Google Drive"
33
  except Exception as e:
34
  return False, f"Authentication failed: {str(e)}"
35
 
36
+ def download_and_rename_files(self, drive_folder_id, naming_convention):
37
+ """Download files from Google Drive and rename them"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  if not self.drive:
39
  return False, "Google Drive not authenticated", []
40
 
 
44
  file_list = self.drive.ListFile({'q': query}).GetList()
45
 
46
  if not file_list:
47
+ # Try to get single file if folder is empty
48
  file = self.drive.CreateFile({'id': drive_folder_id})
49
  if file:
50
  file_list = [file]
51
  else:
52
  return False, "No files found with the specified ID", []
53
 
54
+ renamed_files = []
55
+ existing_dataset = None
56
+ try:
57
+ existing_dataset = load_dataset(self.dataset_name)
58
+ logger.info(f"Loaded existing dataset: {self.dataset_name}")
59
+ start_index = len(existing_dataset['train']) if 'train' in existing_dataset else 0
60
+ except Exception as e:
61
+ logger.info(f"No existing dataset found, starting fresh: {str(e)}")
62
+ start_index = 0
63
+
64
+ for i, file in enumerate(tqdm(file_list, desc="Downloading files")):
65
  if file['mimeType'].startswith('image/'):
66
+ new_filename = f"{naming_convention}_{start_index + i + 1}.jpg"
67
+ file_path = os.path.join(self.local_images_dir, new_filename)
68
 
69
  # Download file
70
+ file.GetContentFile(file_path)
71
 
72
+ # Verify the image can be opened
73
+ try:
74
+ with Image.open(file_path) as img:
75
+ img.verify()
76
+ renamed_files.append({
77
+ 'file_path': file_path,
 
 
 
 
 
 
 
78
  'original_name': file['title'],
79
  'new_name': new_filename,
80
+ 'image': file_path
 
 
 
81
  })
82
+ except Exception as e:
83
+ logger.error(f"Error processing image {file['title']}: {str(e)}")
84
+ if os.path.exists(file_path):
85
+ os.remove(file_path)
86
 
87
+ return True, f"Successfully processed {len(renamed_files)} images", renamed_files
88
  except Exception as e:
89
+ return False, f"Error downloading files: {str(e)}", []
90
 
91
+ def update_huggingface_dataset(self, renamed_files):
92
+ """Update the sports-cards dataset with new images"""
93
  try:
94
  # Create a DataFrame with the file information
95
+ df = pd.DataFrame(renamed_files)
96
 
97
+ # Create a Hugging Face Dataset
98
  new_dataset = Dataset.from_pandas(df)
99
 
100
  try:
 
109
  # Push to Hugging Face Hub
110
  new_dataset.push_to_hub(self.dataset_name, split="train")
111
 
112
+ return True, f"Successfully updated dataset '{self.dataset_name}' with {len(renamed_files)} new images"
113
  except Exception as e:
114
  return False, f"Error updating Hugging Face dataset: {str(e)}"
115
 
116
+ def process_pipeline(folder_id, naming_convention):
117
  """Main pipeline to process images and update dataset"""
118
  manager = DatasetManager()
119
 
 
122
  if not auth_success:
123
  return auth_message
124
 
125
+ # Step 2: Download and rename files
126
+ success, message, renamed_files = manager.download_and_rename_files(folder_id, naming_convention)
127
  if not success:
128
  return message
129
 
130
  # Step 3: Update Hugging Face dataset
131
+ success, hf_message = manager.update_huggingface_dataset(renamed_files)
132
+ return f"{message}\n{hf_message}"
 
 
 
 
 
 
 
 
 
 
133
 
134
  # Gradio interface
135
  demo = gr.Interface(
 
139
  label="Google Drive File/Folder ID",
140
  placeholder="Enter the ID from your Google Drive URL",
141
  value="151VOxPO91mg0C3ORiioGUd4hogzP1ujm"
142
+ ),
143
+ gr.Textbox(
144
+ label="Naming Convention",
145
+ placeholder="e.g., sports_card",
146
+ value="sports_card"
147
  )
148
  ],
149
+ outputs=gr.Textbox(label="Status"),
150
+ title="Sports Cards Dataset Processor",
151
+ description="Download card images from Google Drive and add them to the sports-cards dataset"
152
  )
153
 
154
  if __name__ == "__main__":