Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
from sklearn.decomposition import TruncatedSVD | |
import time | |
import gradio as gr | |
from scipy.sparse import csr_matrix | |
class MatrixFactorization: | |
def __init__(self, n_factors=50): | |
self.n_factors = n_factors | |
self.model = TruncatedSVD(n_components=n_factors, random_state=42) | |
self.user_title_matrix = None | |
self.titles_df = None | |
self.column_names = None | |
self._cached_choices = None | |
def fit(self, df): | |
print("Training model...") | |
start_time = time.time() | |
# Get top 10000 songs | |
top_songs = df.groupby('title')['play_count'].sum().nlargest(10000).index | |
df_filtered = df[df['title'].isin(top_songs)] | |
print("Filtered to 10000 most played songs") | |
# Create pivot table | |
pivot = pd.pivot_table( | |
df_filtered, | |
values='play_count', | |
index='user', | |
columns='title', | |
fill_value=0 | |
) | |
self.column_names = pivot.columns | |
# Convert to sparse matrix | |
self.user_title_matrix = csr_matrix(pivot.values) | |
# Create titles dataframe | |
self.titles_df = df_filtered.groupby('title').agg({ | |
'artist_name': 'first', | |
'year': 'first', | |
'play_count': 'sum', | |
'release': 'first' | |
}) | |
print("Training SVD model...") | |
self.user_vectors = self.model.fit_transform(self.user_title_matrix) | |
self.item_vectors = self.model.components_ | |
# Cache choices | |
self._cached_choices = self.create_title_choices() | |
print(f"Training completed in {time.time() - start_time:.2f} seconds") | |
def get_recommendations(self, selected_titles): | |
if not selected_titles: | |
return [] | |
try: | |
actual_titles = [title.split(" β’ by ")[0] for title in selected_titles] | |
title_to_idx = {title: idx for idx, title in enumerate(self.column_names)} | |
selected_indices = [title_to_idx[title] for title in actual_titles] | |
user_vector = np.mean([self.item_vectors[:, idx] for idx in selected_indices], axis=0) | |
scores = np.dot(user_vector, self.item_vectors) | |
title_scores = [(title, score) for title, score in zip(self.column_names, scores) | |
if title not in actual_titles] | |
recommendations = sorted(title_scores, key=lambda x: x[1], reverse=True)[:5] | |
results = [] | |
for title, score in recommendations: | |
row = self.titles_df.loc[title] | |
confidence = 30 + (score * 70) | |
results.append([ | |
title, | |
row['artist_name'], | |
int(row['year']) if pd.notna(row['year']) else None, | |
f"{min(max(confidence, 30), 100):.2f}%" | |
]) | |
return results | |
except Exception as e: | |
print(f"Error in recommendations: {str(e)}") | |
return [] | |
def create_title_choices(self): | |
title_choices = [] | |
for title, row in self.titles_df.iterrows(): | |
display_text = f"{title} β’ by {row['artist_name']}" | |
extra_info = [] | |
if pd.notna(row['release']): | |
extra_info.append(row['release']) | |
if pd.notna(row['year']): | |
extra_info.append(str(int(row['year']))) | |
if extra_info: | |
display_text += f" [{', '.join(extra_info)}]" | |
title_choices.append(display_text) | |
return sorted(title_choices) | |
def create_gradio_interface(mf_model): | |
try: | |
with gr.Blocks() as demo: | |
gr.Markdown("""# π΅ Music Recommendation System πΆ | |
### Instructions: | |
1. β³ Model loads songs (~1 min) | |
2. π Search by title, artist, album, or year | |
3. π§ Select up to 5 songs | |
4. π Click for recommendations | |
5. π View confidence scores (30-100%) | |
""") | |
with gr.Row(): | |
input_songs = gr.Dropdown( | |
choices=mf_model._cached_choices, | |
label="Search and select songs (up to 5)", | |
info="Format: Title β’ by Artist [Album, Year]", | |
multiselect=True, | |
max_choices=5, | |
filterable=True | |
) | |
with gr.Column(): | |
recommend_btn = gr.Button("Get Recommendations", size="lg") | |
output_table = gr.DataFrame( | |
headers=["Song", "Artist", "Year", "Confidence"], | |
label="Recommended Songs" | |
) | |
recommend_btn.click( | |
fn=mf_model.get_recommendations, | |
inputs=input_songs, | |
outputs=output_table | |
) | |
return demo | |
except Exception as e: | |
print(f"Error creating interface: {str(e)}") | |
return None |