Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- .gitattributes +1 -0
- README.md +16 -13
- app.py +17 -0
- data.csv +3 -0
- model.py +114 -0
- requirements.txt +4 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data.csv filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
1 |
+
# Music Recommendation System
|
2 |
+
|
3 |
+
A music recommendation system built using matrix factorization and deployed on Hugging Face Spaces.
|
4 |
+
|
5 |
+
## Overview
|
6 |
+
This application provides music recommendations based on user-selected songs. It uses truncated SVD for matrix factorization to generate recommendations.
|
7 |
+
|
8 |
+
## How to Use
|
9 |
+
1. Select up to 5 songs you like from the dropdown menu
|
10 |
+
2. Click "Get Recommendations" to see similar songs
|
11 |
+
3. Each recommendation comes with a confidence score
|
12 |
+
|
13 |
+
## Technical Details
|
14 |
+
- Built using Python, Gradio, and scikit-learn
|
15 |
+
- Uses TruncatedSVD for matrix factorization
|
16 |
+
- Deployed on Hugging Face Spaces
|
app.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.decomposition import TruncatedSVD
|
5 |
+
import time
|
6 |
+
from model import MatrixFactorization, create_gradio_interface
|
7 |
+
|
8 |
+
# Load the preprocessed data
|
9 |
+
df = pd.read_csv('data.csv')
|
10 |
+
|
11 |
+
# Initialize and train the model
|
12 |
+
mf_recommender = MatrixFactorization(n_factors=100)
|
13 |
+
mf_recommender.fit(df)
|
14 |
+
|
15 |
+
# Create and launch the Gradio interface
|
16 |
+
demo = create_gradio_interface(mf_recommender)
|
17 |
+
demo.launch()
|
data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0bef871c15556cc555f4bc94d9c43c70019e0368a0c4a59e64802237d83ec7b
|
3 |
+
size 18392003
|
model.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.decomposition import TruncatedSVD
|
4 |
+
import time
|
5 |
+
import gradio as gr
|
6 |
+
from scipy.sparse import csr_matrix
|
7 |
+
|
8 |
+
class MatrixFactorization:
|
9 |
+
def __init__(self, n_factors=50):
|
10 |
+
self.n_factors = n_factors
|
11 |
+
self.model = TruncatedSVD(n_components=n_factors, random_state=42)
|
12 |
+
self.user_title_matrix = None
|
13 |
+
self.titles_df = None
|
14 |
+
self.title_choices = None
|
15 |
+
self.columns = None
|
16 |
+
|
17 |
+
def fit(self, df):
|
18 |
+
print("Training model...")
|
19 |
+
start_time = time.time()
|
20 |
+
|
21 |
+
# Pre-compute title choices for dropdown
|
22 |
+
self.title_choices = df.groupby(['title', 'artist_name'])['year'].first().reset_index()
|
23 |
+
self.title_choices['display'] = self.title_choices.apply(
|
24 |
+
lambda x: f"{x['title']} • by {x['artist_name']}" + (f" [{int(x['year'])}]" if pd.notna(x['year']) else ""),
|
25 |
+
axis=1
|
26 |
+
)
|
27 |
+
|
28 |
+
# Create pivot table and cache columns
|
29 |
+
pivot = pd.pivot_table(
|
30 |
+
df,
|
31 |
+
values='play_count',
|
32 |
+
index='user',
|
33 |
+
columns='title',
|
34 |
+
fill_value=0
|
35 |
+
)
|
36 |
+
self.columns = pivot.columns
|
37 |
+
|
38 |
+
# Convert to sparse matrix
|
39 |
+
self.user_title_matrix = csr_matrix(pivot.values)
|
40 |
+
|
41 |
+
# Train model
|
42 |
+
self.user_vectors = self.model.fit_transform(self.user_title_matrix)
|
43 |
+
self.item_vectors = self.model.components_
|
44 |
+
|
45 |
+
print(f"Training completed in {time.time() - start_time:.2f} seconds")
|
46 |
+
|
47 |
+
def get_recommendations_from_titles(self, selected_titles, n_recommendations=5):
|
48 |
+
if not selected_titles:
|
49 |
+
return []
|
50 |
+
|
51 |
+
try:
|
52 |
+
# Extract titles from display format
|
53 |
+
titles = [title.split(" • by ")[0] for title in selected_titles]
|
54 |
+
|
55 |
+
# Get indices of selected titles
|
56 |
+
indices = [np.where(self.columns == title)[0][0] for title in titles]
|
57 |
+
|
58 |
+
# Calculate user vector
|
59 |
+
user_vector = np.mean([self.item_vectors[:, idx] for idx in indices], axis=0)
|
60 |
+
|
61 |
+
# Get predictions
|
62 |
+
scores = np.dot(user_vector, self.item_vectors)
|
63 |
+
|
64 |
+
# Get top recommendations
|
65 |
+
top_indices = np.argsort(scores)[::-1]
|
66 |
+
|
67 |
+
# Filter out selected titles
|
68 |
+
recommendations = []
|
69 |
+
count = 0
|
70 |
+
for idx in top_indices:
|
71 |
+
title = self.columns[idx]
|
72 |
+
if title not in titles:
|
73 |
+
display = self.title_choices[self.title_choices['title'] == title].iloc[0]
|
74 |
+
recommendations.append([
|
75 |
+
title,
|
76 |
+
display['artist_name'],
|
77 |
+
int(display['year']) if pd.notna(display['year']) else None,
|
78 |
+
f"{scores[idx] * 100:.2f}%"
|
79 |
+
])
|
80 |
+
count += 1
|
81 |
+
if count >= n_recommendations:
|
82 |
+
break
|
83 |
+
|
84 |
+
return recommendations
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error in recommendations: {str(e)}")
|
88 |
+
return []
|
89 |
+
|
90 |
+
def create_gradio_interface(mf_model):
|
91 |
+
with gr.Blocks() as demo:
|
92 |
+
gr.Markdown("# Music Recommendation System")
|
93 |
+
with gr.Row():
|
94 |
+
input_songs = gr.Dropdown(
|
95 |
+
choices=sorted(mf_model.title_choices['display'].tolist()),
|
96 |
+
label="Select songs (up to 5)",
|
97 |
+
multiselect=True,
|
98 |
+
max_choices=5,
|
99 |
+
filterable=True
|
100 |
+
)
|
101 |
+
with gr.Row():
|
102 |
+
recommend_btn = gr.Button("Get Recommendations")
|
103 |
+
output_table = gr.DataFrame(
|
104 |
+
headers=["Song", "Artist", "Year", "Confidence"],
|
105 |
+
label="Recommendations"
|
106 |
+
)
|
107 |
+
|
108 |
+
recommend_btn.click(
|
109 |
+
fn=mf_model.get_recommendations_from_titles,
|
110 |
+
inputs=input_songs,
|
111 |
+
outputs=output_table
|
112 |
+
)
|
113 |
+
|
114 |
+
return demo
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.19.2
|
2 |
+
numpy==1.24.3
|
3 |
+
pandas==2.0.3
|
4 |
+
scikit-learn==1.3.0
|